Do you want to publish a course? Click here

SFA: Small Faces Attention Face Detector

86   0   0.0 ( 0 )
 Added by Shi Luo
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In recent year, tremendous strides have been made in face detection thanks to deep learning. However, most published face detectors deteriorate dramatically as the faces become smaller. In this paper, we present the Small Faces Attention (SFA) face detector to better detect faces with small scale. First, we propose a new scale-invariant face detection architecture which pays more attention to small faces, including 4-branch detection architecture and small faces sensitive anchor design. Second, feature maps fusion strategy is applied in SFA by partially combining high-level features into low-level features to further improve the ability of finding hard faces. Third, we use multi-scale training and testing strategy to enhance face detection performance in practice. Comprehensive experiments show that SFA significantly improves face detection performance, especially on small faces. Our real-time SFA face detector can run at 5 FPS on a single GPU as well as maintain high performance. Besides, our final SFA face detector achieves state-of-the-art detection performance on challenging face detection benchmarks, including WIDER FACE and FDDB datasets, with competitive runtime speed. Both our code and models will be available to the research community.

rate research

Read More

The common implementation of face recognition systems as a cascade of a detection stage and a recognition or verification stage can cause problems beyond failures of the detector. When the detector succeeds, it can detect faces that cannot be recognized, no matter how capable the recognition system. Recognizability, a latent variable, should therefore be factored into the design and implementation of face recognition systems. We propose a measure of recognizability of a face image that leverages a key empirical observation: an embedding of face images, implemented by a deep neural network trained using mostly recognizable identities, induces a partition of the hypersphere whereby unrecognizable identities cluster together. This occurs regardless of the phenomenon that causes a face to be unrecognizable, it be optical or motion blur, partial occlusion, spatial quantization, poor illumination. Therefore, we use the distance from such an unrecognizable identity as a measure of recognizability, and incorporate it in the design of the over-all system. We show that accounting for recognizability reduces error rate of single-image face recognition by 58% at FAR=1e-5 on the IJB-C Covariate Verification benchmark, and reduces verification error rate by 24% at FAR=1e-5 in set-based recognition on the IJB-C benchmark.
While deep face recognition has benefited significantly from large-scale labeled data, current research is focused on leveraging unlabeled data to further boost performance, reducing the cost of human annotation. Prior work has mostly been in controlled settings, where the labeled and unlabeled data sets have no overlapping identities by construction. This is not realistic in large-scale face recognition, where one must contend with such overlaps, the frequency of which increases with the volume of data. Ignoring identity overlap leads to significant labeling noise, as data from the same identity is split into multiple clusters. To address this, we propose a novel identity separation method based on extreme value theory. It is formulated as an out-of-distribution detection algorithm, and greatly reduces the problems caused by overlapping-identity label noise. Considering cluster assignments as pseudo-labels, we must also overcome the labeling noise from clustering errors. We propose a modulation of the cosine loss, where the modulation weights correspond to an estimate of clustering uncertainty. Extensive experiments on both controlled and real settings demonstrate our methods consistent improvements over supervised baselines, e.g., 11.6% improvement on IJB-A verification.
In this paper, we propose a novel face detection network with three novel contributions that address three key aspects of face detection, including better feature learning, progressive loss design and anchor assign based data augmentation, respectively. First, we propose a Feature Enhance Module (FEM) for enhancing the original feature maps to extend the single shot detector to dual shot detector. Second, we adopt Progressive Anchor Loss (PAL) computed by two different sets of anchors to effectively facilitate the features. Third, we use an Improved Anchor Matching (IAM) by integrating novel anchor assign strategy into data augmentation to provide better initialization for the regressor. Since these techniques are all related to the two-stream design, we name the proposed network as Dual Shot Face Detector (DSFD). Extensive experiments on popular benchmarks, WIDER FACE and FDDB, demonstrate the superiority of DSFD over the state-of-the-art face detectors.
Unveiling face images of a subject given his/her high-level representations extracted from a blackbox Face Recognition engine is extremely challenging. It is because the limitations of accessible information from that engine including its structure and uninterpretable extracted features. This paper presents a novel generative structure with Bijective Metric Learning, namely Bijective Generative Adversarial Networks in a Distillation framework (DiBiGAN), for synthesizing faces of an identity given that persons features. In order to effectively address this problem, this work firstly introduces a bijective metric so that the distance measurement and metric learning process can be directly adopted in image domain for an image reconstruction task. Secondly, a distillation process is introduced to maximize the information exploited from the blackbox face recognition engine. Then a Feature-Conditional Generator Structure with Exponential Weighting Strategy is presented for a more robust generator that can synthesize realistic faces with ID preservation. Results on several benchmarking datasets including CelebA, LFW, AgeDB, CFP-FP against matching engines have demonstrated the effectiveness of DiBiGAN on both image realism and ID preservation properties.
112 - Yuezun Li , Xin Yang , Baoyuan Wu 2019
Recent years have seen fast development in synthesizing realistic human faces using AI technologies. Such fake faces can be weaponized to cause negative personal and social impact. In this work, we develop technologies to defend individuals from becoming victims of recent AI synthesized fake videos by sabotaging would-be training data. This is achieved by disrupting deep neural network (DNN) based face detection method with specially designed imperceptible adversarial perturbations to reduce the quality of the detected faces. We describe attacking schemes under white-box, gray-box and black-box settings, each with decreasing information about the DNN based face detectors. We empirically show the effectiveness of our methods in disrupting state-of-the-art DNN based face detectors on several datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا