Do you want to publish a course? Click here

On the non-embedding of $ell_1$ in the James Tree Space

88   0   0.0 ( 0 )
 Added by Ioakeim Ampatzoglou
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

James Tree Space ($mathcal{JT}$), introduced by R. James, is the first Banach space constructed having non-separable conjugate and not containing $ell^1$. James actually proved that every infinite dimensional subspace of $mathcal{JT}$ contains a Hilbert space, which implies the $ell^1$ non-embedding. In this expository article, we present a direct proof of the $ell^1$ non-embedding, using Rosenthals $ell^1$- Theorem and some measure theoretic arguments, namely Rieszs Representation Theorem.



rate research

Read More

A recent result of Freeman, Odell, Sari, and Zheng states that whenever a separable Banach space not containing $ell_1$ has the property that all asymptotic models generated by weakly null sequences are equivalent to the unit vector basis of $c_0$ then the space is Asymptotic $c_0$. We show that if we replace $c_0$ with $ell_1$ then this result is no longer true. Moreover, a stronger result of B. Maurey - H. P. Rosenthal type is presented, namely, there exists a reflexive Banach space with an unconditional basis admitting $ell_1$ as a unique asymptotic model whereas any subsequence of the basis generates a non-Asymptotic $ell_1$ subspace.
The James Webb Space Telescope (JWST) is a large (6.6m), cold (50K), infrared-optimized space observatory that will be launched early in the next decade. The observatory will have four instruments: a near-infrared camera, a near-infrared multi-object spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 to 5.0 microns, while the mid-infrared instrument will do both imaging and spectroscopy from 5.0 to 29 microns. The JWST science goals are divided into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the early universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.
Regression tree (RT) has been widely used in machine learning and data mining community. Given a target data for prediction, a regression tree is first constructed based on a training dataset before making prediction for each leaf node. In practice, the performance of RT relies heavily on the local mean of samples from an individual node during the tree construction/prediction stage, while neglecting the global information from different nodes, which also plays an important role. To address this issue, we propose a novel regression tree, named James-Stein Regression Tree (JSRT) by considering global information from different nodes. Specifically, we incorporate the global mean information based on James-Stein estimator from different nodes during the construction/predicton stage. Besides, we analyze the generalization error of our method under the mean square error (MSE) metric. Extensive experiments on public benchmark datasets verify the effectiveness and efficiency of our method, and demonstrate the superiority of our method over other RT prediction methods.
We show that the two-dimensional minimum-volume central section of the $n$-dimensional cross-polytope is attained by the regular $2n$-gon. We establish stability-type results for hyperplane sections of $ell_p$-balls in all the cases where the extremisers are known. Our methods are mainly probabilistic, exploring connections between negative moments of projections of random vectors uniformly distributed on convex bodies and volume of their sections.
The James Webb Space Telescope (JWST) provides the opportunity for ground-breaking observations of asteroids. It covers wavelength regions that are unavailable from the ground, and does so with unprecedented sensitivity. The main-belt and Trojan asteroids are all observable at some point in the JWST lifetime. We present an overview of the capabilities for JWST and how they apply to the asteroids as well as some short science cases that take advantage of these capabilities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا