Superposition of causal order as a metrological resource for quantum thermometry


Abstract in English

We propose a novel approach to qubit thermometry using a quantum switch, that introduces an indefinite causal order in the probe-bath interaction, to significantly enhance the thermometric precision. The resulting qubit probe shows improved precision in both low and high temperature regimes when compared to optimal qubit probes studied previously. It even performs better than a Harmonic oscillator probe, in spite of having only two energy levels rather than an infinite number of energy levels as that in a harmonic oscillator. We thereby show unambiguously that quantum resources such as the quantum switch can significantly improve equilibrium thermometry. We also derive a new form of thermodynamic uncertainty relation that is tighter and depends on the energy gap of the probe. The present work may pave the way for using indefinite causal order as a metrological resource.

Download