Do you want to publish a course? Click here

Stellar ages, masses and radii from asteroseismic modeling are robust to systematic errors in spectroscopy

63   0   0.0 ( 0 )
 Added by Earl Bellinger
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The search for twins of the Sun and Earth relies on accurate characterization of stellar and exoplanetary parameters: i.e., ages, masses, and radii. In the modern era of asteroseismology, parameters of solar-like stars are derived by fitting theoretical models to observational data, which include measurements of their oscillation frequencies, metallicity [Fe/H], and effective temperature Teff. Combining this information with transit data furthermore yields the corresponding parameters for their exoplanets. While [Fe/H] and Teff are commonly stated to a precision of ~0.1 dex and ~100 K, the impact of errors in their measurement has not been studied in practice within the context of the parameters derived from them. Here we use the Stellar Parameters in an Instant (SPI) pipeline to estimate the parameters of nearly 100 stars observed by Kepler and Gaia, many of which are confirmed planet hosts. We adjust the reported spectroscopic measurements of these stars by introducing faux systematic errors and artificially increasing the reported uncertainties, and quantify the differences in the resulting parameters. We find that a systematic error of 0.1 dex in [Fe/H] translates to differences of only 4%, 2%, and 1% on average in the resulting stellar ages, masses, and radii, which are well within their uncertainties (~11%, 3.5%, 1.4%) as derived by SPI. We also find that increasing the uncertainty of [Fe/H] measurements by 0.1 dex increases the uncertainties by only 0.01 Gyr, 0.02 M_sun, and 0.01 R_sun, which are again well below their reported uncertainties (0.5 Gyr, 0.04 M_sun, 0.02 R_sun). The results for Teff at 100 K are similar. Stellar parameters from SPI are unchanged within uncertainties by errors of up to 0.14 dex or 175 K, and are even more robust to errors in Teff than the seismic scaling relations. Consequently, the parameters for their exoplanets are robust as well.



rate research

Read More

The asteroseismic modelling of period spacing patterns from gravito-inertial modes in stars with a convective core is a high-dimensional problem. We utilise the measured period spacing pattern of prograde dipole gravity modes (acquiring $Pi_0$), in combination with the effective temperature ($T_{rm eff}$) and surface gravity ($log g$) derived from spectroscopy, to estimate the fundamental stellar parameters and core properties of 37 $gamma~$Doradus ($gamma~$Dor) stars whose rotation frequency has been derived from $textit{Kepler}$ photometry. We make use of two 6D grids of stellar models, one with step core overshooting and one with exponential core overshooting, to evaluate correlations between the three observables $Pi_0$, $T_{rm eff}$, and $log g$ and the mass, age, core overshooting, metallicity, initial hydrogen mass fraction and envelope mixing. We provide multivariate linear model recipes relating the stellar parameters to be estimated to the three observables ($Pi_0$, $T_{rm eff}$, $log g$). We estimate the (core) mass, age, core overshooting and metallicity of $gamma~$Dor stars from an ensemble analysis and achieve relative uncertainties of $sim!10$ per cent for the parameters. The asteroseismic age determination allows us to conclude that efficient angular momentum transport occurs already early on during the main sequence. We find that the nine stars with observed Rossby modes occur across almost the entire main-sequence phase, except close to core-hydrogen exhaustion. Future improvements of our work will come from the inclusion of more types of detected modes per star, larger samples, and modelling of individual mode frequencies.
Using asteroseismic data and stellar evolution models we make the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence life time is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in radius, mass and age, respectively. We compare our results with those obtained from global oscillation properties, and discuss the possible sources of uncertainties in asteroseismic stellar modeling where further studies are still needed.
Accurate stellar parameters are needed in numerous domains of astrophysics. The position of stars on the H-R diagram is an important indication of their structure and evolution, and it helps improve stellar models. Furthermore, the age and mass of stars hosting planets are required elements for studying exoplanetary systems. We aim at determining accurate parameters of a set of 18 bright exoplanet host and potential host stars from interferometric measurements, photometry, and stellar models. Using the VEGA/CHARA interferometer, we measured the angular diameters of 18 stars, ten of which host exoplanets. We combined them with their distances to estimate their radii. We used photometry to derive their bolometric flux and, then, their effective temperature and luminosity to place them on the H-R diagram. We then used the PARSEC models to derive their best fit ages and masses, with error bars derived from MC calculations. Our interferometric measurements lead to an average of 1.9% uncertainty on angular diameters and 3% on stellar radii. There is good agreement between measured and indirect estimations of angular diameters (from SED fitting or SB relations) for MS stars, but not as good for more evolved stars. For each star, we provide a likelihood map in the mass-age plane; typically, two distinct sets of solutions appear (an old and a young age). The errors on the ages and masses that we provide account for the metallicity uncertainties, which are often neglected by other works. From measurements of its radius and density, we also provide the mass of 55 Cnc independently of models. From the stellar masses, we provide new estimates of semi-major axes and minimum masses of exoplanets with reliable uncertainties. We also derive the radius, density, and mass of 55 Cnc e, a super-Earth that transits its stellar host. Our exoplanetary parameters reflect the known population of exoplanets.
We present a method to build a probability density function (pdf) for the age of a star based on its peculiar velocities $U$, $V$ and $W$ and its orbital eccentricity. The sample used in this work comes from the Geneva-Copenhagen Survey (GCS) which contains both the spatial velocities, orbital eccentricities and isochronal ages for about $14,000$ stars. Using the GCS stars, we fitted the parameters that describe the relations between the distributions of kinematical properties and age. This parametrization allows us to obtain an age probability from the kinematical data. From this age pdf, we estimate an individual average age for the star using the most likely age and the expected age. We have obtained the stellar age pdf for the age of $9,102$ stars from the GCS and have shown that the distribution of individual ages derived from our method is in good agreement with the distribution of isochronal ages. We also observe a decline in the mean metallicity with our ages for stars younger than 7 Gyr, similar to the one observed for isochronal ages. This method can be useful for the estimation of rough stellar ages for those stars that fall in areas of the HR diagram where isochrones are tightly crowded. As an example of this method, we estimate the age of Trappist-1, which is a M8V star, obtaining the age of $t(UVW) = 12.50(+0.29-6.23)$ Gyr.
We report the discovery of two transiting brown dwarfs (BDs), TOI-811b and TOI-852b, from NASAs Transiting Exoplanet Survey Satellite mission. These two transiting BDs have similar masses, but very different radii and ages. Their host stars have similar masses, effective temperatures, and metallicities. The younger and larger transiting BD is TOI-811b at a mass of $M_b = 55.3 pm 3.2{rm M_J}$ and radius of $R_b = 1.35 pm 0.09{rm R_J}$ and it orbits its host star in a period of $P = 25.16551 pm 0.00004$ days. Its age of $93^{+61}_{-29}$ Myr, which we derive from an application of gyrochronology to its host star, is why this BDs radius is relatively large, not heating from its host star since this BD orbits at a longer orbital period than most known transiting BDs. This constraint on the youth of TOI-811b allows us to test substellar mass-radius isochrones where the radius of BDs changes rapidly with age. TOI-852b is a much older (4.0 Gyr from stellar isochrone models of the host star) and smaller transiting BD at a mass of $M_b = 53.7 pm 1.3{rm M_J}$, a radius of $R_b = 0.75 pm 0.03{rm R_J}$, and an orbital period of $P = 4.94561 pm 0.00008$ days. TOI-852b joins the likes of other old transiting BDs that trace out the oldest substellar mass-radius isochrones where contraction of the BDs radius asymptotically slows. Both host stars have a mass of $M_star = 1.32{rm M_odot}pm0.05$ and differ in their radii, $T_{rm eff}$, and [Fe/H] with TOI-811 having $R_star=1.27pm0.09{rm R_odot}$, $T_{rm eff} = 6107 pm 77$K, and $rm [Fe/H] = +0.40 pm 0.09$ and TOI-852 having $R_star=1.71pm0.04{rm R_odot}$, $T_{rm eff} = 5768 pm 84$K, and $rm [Fe/H] = +0.33 pm 0.09$. We take this opportunity to examine how TOI-811b and TOI-852b serve as test points for young and old substellar isochrones, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا