Network Utility Maximization under Maximum Delay Constraints and Throughput Requirements


Abstract in English

We consider the problem of maximizing aggregate user utilities over a multi-hop network, subject to link capacity constraints, maximum end-to-end delay constraints, and user throughput requirements. A users utility is a concave function of the achieved throughput or the experienced maximum delay. The problem is important for supporting real-time multimedia traffic, and is uniquely challenging due to the need of simultaneously considering maximum delay constraints and throughput requirements. We first show that it is NP-complete either (i) to construct a feasible solution strictly meeting all constraints, or (ii) to obtain an optimal solution after we relax maximum delay constraints or throughput requirements up to constant ratios. We then develop a polynomial-time approximation algorithm named PASS. The design of PASS leverages a novel understanding between non-convex maximum-delay-aware problems and their convex average-delay-aware counterparts, which can be of independent interest and suggest a new avenue for solving maximum-delay-aware network optimization problems. Under realistic conditions, PASS achieves constant or problem-dependent approximation ratios, at the cost of violating maximum delay constraints or throughput requirements by up to constant or problem-dependent ratios. PASS is practically useful since the conditions for PASS are satisfied in many popular application scenarios. We empirically evaluate PASS using extensive simulations of supporting video-conferencing traffic across Amazon EC2 datacenters. Compared to existing algorithms and a conceivable baseline, PASS obtains up to $100%$ improvement of utilities, by meeting the throughput requirements but relaxing the maximum delay constraints that are acceptable for practical video conferencing applications.

Download