Do you want to publish a course? Click here

Percolation in Fock space as a proxy for many-body localisation

101   0   0.0 ( 0 )
 Added by Sthitadhi Roy
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study classical percolation models in Fock space as proxies for the quantum many-body localisation (MBL) transition. Percolation rules are defined for two models of disordered quantum spin-chains using their microscopic quantum Hamiltonians and the topologies of the associated Fock-space graphs. The percolation transition is revealed by the statistics of Fock-space cluster sizes, obtained by exact enumeration for finite-sized systems. As a function of disorder strength, the typical cluster size shows a transition from a volume law in Fock space to sub-volume law, directly analogous to the behaviour of eigenstate participation entropies across the MBL transition. Finite-size scaling analyses for several diagnostics of cluster size statistics yield mutually consistent critical properties. We show further that local observables averaged over Fock-space clusters also carry signatures of the transition, with their behaviour across it in direct analogy to that of corresponding eigenstate expectation values across the MBL transition. The Fock-space clusters can be explored under a mapping to kinetically constrained models. Dynamics within this framework likewise show the ergodicity-breaking transition via Monte Carlo averaged local observables, and yield critical properties consistent with those obtained from both exact cluster enumeration and analytic results derived in our recent work [arXiv:1812.05115]. This mapping allows access to system sizes two orders of magnitude larger than those accessible in exact enumerations. Simple physical pictures based on freezing of local real-space segments of spins are also presented, and shown to give values for the critical disorder strength and correlation length exponent $ u$ consistent with numerical studies.



rate research

Read More

We construct and solve a classical percolation model with a phase transition that we argue acts as a proxy for the quantum many-body localisation transition. The classical model is defined on a graph in the Fock space of a disordered, interacting quantum spin chain, using a convenient choice of basis. Edges of the graph represent matrix elements of the spin Hamiltonian between pairs of basis states that are expected to hybridise strongly. At weak disorder, all nodes are connected, forming a single cluster. Many separate clusters appear above a critical disorder strength, each typically having a size that is exponentially large in the number of spins but a vanishing fraction of the Fock-space dimension. We formulate a transfer matrix approach that yields an exact value $ u=2$ for the localisation length exponent, and also use complete enumeration of clusters to study the transition numerically in finite-sized systems.
We study the eigenstates of a paradigmatic model of many-body localization in the Fock basis constructed out of the natural orbitals. By numerically studying the participation ratio, we identify a sharp crossover between different phases at a disorder strength close to the disorder strength at which subdiffusive behaviour sets in, significantly below the many-body localization transition. We repeat the analysis in the conventionally used computational basis, and show that many-body localized eigenstates are much stronger localized in the Fock basis constructed out of the natural orbitals than in the computational basis.
We adopt a geometric perspective on Fock space to provide two complementary insights into the eigenstates in many-body-localized fermionic systems. On the one hand, individual many-body-localized eigenstates are well approximated by a Slater determinant of single-particle orbitals. On the other hand, the orbitals of different eigenstates in a given system display a varying, and generally imperfect, degree of compatibility, as we quantify by a measure based on the projectors onto the corresponding single-particle subspaces. We study this incompatibility between states of fixed and differing particle number, as well as inside and outside the many-body-localized regime. This gives detailed insights into the emergence and strongly correlated nature of quasiparticle-like excitations in many-body localized systems, revealing intricate correlations between states of different particle number down to the level of individual realizations.
We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify some landmarks within the MBL regime. Our first landmark is an estimate of where the MBL phase becomes unstable to avalanches, obtained by measuring the slowest relaxation rate of a finite chain coupled to an infinite bath at one end. Our estimates indicate that the actual MBL-to-thermal phase transition, in infinite-length systems, occurs much deeper in the MBL regime than has been suggested by most previous studies. Our other landmarks involve system-wide resonances. We find that the effective matrix elements producing eigenstates with system-wide resonances are enormously broadly distributed. This means that the onset of such resonances in typical samples occurs quite deep in the MBL regime, and the first such resonances typically involve rare pairs of eigenstates that are farther apart in energy than the minimum gap. Thus we find that the resonance properties define two landmarks that divide the MBL regime in to three subregimes: (i) at strongest disorder, typical samples do not have any eigenstates that are involved in system-wide many-body resonances; (ii) there is a substantial intermediate regime where typical samples do have such resonances, but the pair of eigenstates with the minimum spectral gap does not; and (iii) in the weaker randomness regime, the minimum gap is involved in a many-body resonance and thus subject to level repulsion. Nevertheless, even in this third subregime, all but a vanishing fraction of eigenstates remain non-resonant and the system thus still appears MBL in many respects. Based on our estimates of the location of the avalanche instability, it might be that the MBL phase is only part of subregime (i).
Subsystems of strongly disordered, interacting quantum systems can fail to thermalize because of the phenomenon of many-body localization (MBL). In this article, we explore a tensor network description of the eigenspectra of such systems. Specifically, we will argue that the presence of a complete set of local integrals of motion in MBL implies an efficient representation of the entire spectrum of energy eigenstates with a single tensor network, a emph{spectral} tensor network. Our results are rigorous for a class of idealized systems related to MBL with integrals of motion of finite support. In one spatial dimension, the spectral tensor network allows for the efficient computation of expectation values of a large class of operators (including local operators and string operators) in individual energy eigenstates and in ensembles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا