Chiral to helical Majorana fermion transition in a $p$-wave superconductor


Abstract in English

Chiral and helical Majorana edge modes are two archetypal gapless excitations of two-dimensional topological superconductors. They belong to superconductors from two different Altland-Zirnbauer symmetry classes characterized by $mathbb{Z}$ and $mathbb{Z}_2$ topological invariant respectively. It seems improbable to tune a pair of co-propagating chiral edge modes to counter-propagate without symmetry breaking. Here we show that such a direct topological transition is in fact possible, provided the system possesses an additional symmetry $mathcal{O}$ which changes the bulk topological invariant to $mathbb{Z}oplus mathbb{Z}$ type. A simple model describing the proximity structure of a Chern insulator and a $p_x$-wave superconductor is proposed and solved analytically to illustrate the transition between two topologically nontrivial phases. The weak pairing phase has two chiral Majorana edge modes, while the strong pairing phase is characterized by $mathcal{O}$-graded Chern number and hosts a pair of counter-propagating Majorana fermions. The bulk topological invariants and edge theory are worked out in detail. Implications of these results to topological quantum computing based on Majorana fermions are discussed.

Download