Do you want to publish a course? Click here

Comprehensive stellar seismic analysis : New method exploiting the glitches information in solar-like pulsators

178   0   0.0 ( 0 )
 Added by Martin Farnir
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims: We develop a method that provides a comprehensive analysis of the oscillation spectra of solar-like pulsators. We define new seismic indicators that should be as uncorrelated and as precise as possible and should hold detailed information about stellar interiors. This is essential to improve the quality of the results obtained from asteroseismology as it will provide better stellar models which in turn can be used to refine inferences made in exoplanetology and galactic archaeology. Methods: The presented method - WhoSGlAd - relies on Gram-Schmidts orthogonalisation process. A Euclidean vector subspace of functions is defined and the oscillation frequencies are projected over an orthonormal basis in a specific order. This allows the obtention of independent coefficients that we combine to define independent seismic indicators. Results: The developed method has been shown to be stable and to converge efficiently for solar-like pulsators. Thus, detailed and precise inferences can be obtained on the mass, the age, the chemical composition and the undershooting in the interior of the studied stars. However, attention has to be paid when studying the helium glitch as there seems to be a degeneracy between the influence of the helium abundance and that of the heavy elements on the glitch amplitude. As an example, we analyse the 16CygA (HD 186408) oscillation spectrum to provide an illustration of the capabilities of the method.



rate research

Read More

66 - Margarida S. Cunha 2021
Sudden changes in the internal structure of stars, placed at the interface between convective and radiative regions, regions of partial ionisation, or between layers that have acquired different chemical composition as a result of nuclear burning, often produce specific signatures in the stars oscillation spectra. Through the study of these signatures one may gain information on the physical processes that shape the regions that produce them, including diffusion and chemical mixing beyond the convectively unstable regions, as well as information about the helium content of stars. In this talk, I will review important theoretical and observational efforts conducted over the years towards this goal. I will emphasise the potential offered by the study of acoustic, gravity, and mixed modes observed in stars of different mass and evolutionary stages, at a time when space-based data is allowing us to build on the knowledge gained from the study of the sun and white dwarfs, where these efforts have long been undertaken, extending the methods developed to stars across the HR diagramme.
Context. The object HD 43587Aa is a G0V star observed during the 145-day LRa03 run of the COnvection, ROtation and planetary Transits space mission (CoRoT), for which complementary High Accuracy Radial velocity Planet Searcher (HARPS) spectra with S/N>300 were also obtained. Its visual magnitude is 5.71, and its effective temperature is close to 5950 K. It has a known companion in a highly eccentric orbit and is also coupled with two more distant companions. Aims. We undertake a preliminary investigation of the internal structure of HD 43587Aa. Methods. We carried out a seismic analysis of the star, using maximum likelihood estimators and Markov Chain Monte Carlo methods. Results. We established the first table of the eigenmode frequencies, widths, and heights for HD 43587Aa. The star appears to have a mass and a radius slightly larger than the Sun, and is slightly older (5.6 Gyr). Two scenarios are suggested for the geometry of the star: either its inclination angle is very low, or the rotation velocity of the star is very low. Conclusions. A more detailed study of the rotation and of the magnetic and chromospheric activity for this star is needed, and will be the subject of a further study. New high resolution spectrometric observations should be performed for at least several months in duration.
We present a first application of Whosglad method to the components A and B of the 16 Cygni system. The method was developed to provide a comprehensive analysis of stellar oscillation spectra. It defines new seismic indicators which are as uncorrelated and precise as possible and hold detailed information about stellar interiors. Such indicators, as illustrated in the present paper, may be used to generate stellar models via forward seismic modeling. Finally, seismic constraints retrieved by the method provide realistic stellar parameters.
Finding solar-analog stars with fundamental properties as close as possible to the Sun and studying the characteristics of their surface magnetic activity is a very promising way to understand the solar variability and its associated dynamo process. However, the identification of solar-analog stars depends on the accuracy of the estimated stellar parameters. Thanks to the photometric CoROT and Kepler space missions, the addition of asteroseismic data was proven to provide the most accurate fundamental properties that can be derived from stellar modeling today. Here, we present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample (Salabert et al., 2016a). We measured their magnetic activity properties using the observations collected by the Kepler satellite and the ground-based, high-resolution HERMES spectrograph. The photospheric (Sph) and chromospheric (S) magnetic activity proxies of these seismic solar analogs are compared in relation to the solar activity. We show that the activity of the Sun is comparable to the activity of the seismic solar analogs, within the maximum-to-minimum temporal variations of the 11-year solar activity cycle. Furthermore, we report on the discovery of temporal variability in the acoustic frequencies of the young (1 Gyr-old) solar analog KIC10644253 with a modulation of about 1.5 years, which agrees with the derived photospheric activity Sph (Salabert et al, 2016b). It could be the signature of the short-period modulation, or quasi-biennal oscillation, of its magnetic activity as observed in the Sun and in the 1-Gyr-old solar analog HD30495. In addition, the lithium abundance and the chromospheric activity estimated from HERMES confirms that KIC10644253 is a young and more active star than the Sun.
We present a comprehensive seismic study of the three pulsating stars of $beta$ Cep/SPB type: $ u$ Eridani, 12 Lacertae and $gamma$ Pegasi. Models with the modified mean opacity profile are constructed in order to account for both the observed frequency range and the values of some individual frequencies. To decrease the number of possible solutions, we make use of the non-adiabatic parameter $f$, whose value is very sensitive to subphotospheric layers where pulsations are driven. This complex seismic modelling show the need for a significant modification of the opacity profile.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا