On the ergodicity of geodesic flows on surfaces without focal points


Abstract in English

In this article, we study the ergodicity of the geodesic flows on surfaces with no focal points. Let $M$ be a smooth connected and closed surface equipped with a $C^infty$ Riemannian metric $g$, whose genus $mathfrak{g} geq 2$. Suppose that $(M,g)$ has no focal points. We prove that the geodesic flow on the unit tangent bundle of $M$ is ergodic with respect to the Liouville measure, under the assumption that the set of points on $M$ with negative curvature has at most finitely many connected components.

Download