Laser writing of scalable single colour centre in silicon carbide


Abstract in English

Single photon emitters in silicon carbide (SiC) are attracting attention as quantum photonic systems. However, to achieve scalable devices it is essential to generate single photon emitters at desired locations on demand. Here we report the controlled creation of single silicon vacancy ($V_{Si}$) centres in 4H-SiC using laser writing without any post-annealing process. Due to the aberration correction in the writing apparatus and the non-annealing process, we generate single $V_{Si}$ centres with yields up to 30%, located within about 80 nm of the desired position in the transverse plane. We also investigated the photophysics of the laser writing $V_{Si}$ centres and conclude that there are about 16 photons involved in the laser writing $V_{Si}$ centres process. Our results represent a powerful tool in fabrication of single $V_{Si}$ centres in SiC for quantum technologies and provide further insights into laser writing defects in dielectric materials.

Download