Bundled Crossings Revisited


Abstract in English

An effective way to reduce clutter in a graph drawing that has (many) crossings is to group edges that travel in parallel into emph{bundles}. Each edge can participate in many such bundles. Any crossing in this bundled graph occurs between two bundles, i.e., as a emph{bundled crossing}. We consider the problem of bundled crossing minimization: A graph is given and the goal is to find a bundled drawing with at most $k$ bundled crossings. We show that the problem is NP-hard when we require a simple drawing. Our main result is an FPT algorithm (in $k$) when we require a simple circular layout. These results make use of the connection between bundled crossings and graph genus.

Download