No Arabic abstract
SU(3) gauge theory with $N_f$ fermions in the fundamental representation serves as a theoretical testing ground for possible infrared conformal behavior, which could play a role in BSM composite Higgs models. We use lattice simulations to study the 10-flavor model, for which it has been claimed there is an infrared fixed point in the gauge coupling $beta$-function. Our results suggest the opposite conclusion, namely we find no $beta$-function fixed point in the explored range, with qualitative agreement with the 5-loop $overline{MS}$ prediction. We comment on the inconsistency between our findings and other studies.
Incorporated with twisted boundary condition, Polyakov loop correlators can give a definition of the renormalized coupling. We employ this scheme for the step scaling method (with step size s = 2) in the search of conformal fixed point of SU(3) gauge theory with 12 massless flavors. Staggered fermion and plaquette gauge action are used in the lattice simulation with six different lattice sizes, L/a = 20, 16, 12, 10, 8 and 6. For the largest lattice size, L/a = 20, we used a large number of Graphics Processing Units (GPUs) and accumulated 3,000,000 trajectories in total. We found that the step scaling function sigma (u) is consistent with u in the low-energy region. This means the existence of conformal fixed point. Some details of our analysis and simulations will also be presented.
We study the discrete beta function of SU(3) gauge theory with Nf=12 massless fermions in the fundamental representation. Using an nHYP-smeared staggered lattice action and an improved gradient flow running coupling $tilde g_c^2(L)$ we determine the continuum-extrapolated discrete beta function up to $g_c^2 approx 8.2$. We observe an IR fixed point at $g_{star}^2 = 7.3left(_{-2}^{+8}right)$ in the $c = sqrt{8t} / L = 0.25$ scheme, and $g_{star}^2 = 7.3left(_{-3}^{+6}right)$ with c=0.3, combining statistical and systematic uncertainties in quadrature. The systematic effects we investigate include the stability of the $(a / L) to 0$ extrapolations, the interpolation of $tilde g_c^2(L)$ as a function of the bare coupling, the improvement of the gradient flow running coupling, and the discretization of the energy density. In an appendix we observe that the resulting systematic errors increase dramatically upon combining smaller $c lesssim 0.2$ with smaller $L leq 12$, leading to an IR fixed point at $g_{star}^2 = 5.9(1.9)$ in the c=0.2 scheme, which resolves to $g_{star}^2 = 6.9left(_{-1}^{+6}right)$ upon considering only $L geq 16$. At the IR fixed point we measure the leading irrelevant critical exponent to be $gamma_g^{star} = 0.26(2)$, comparable to perturbative estimates.
We investigate SU(3) gauge theories in four dimensions with Nf fundamental fermions, on a lattice using the Wilson fermion. Clarifying the vacuum structure in terms of Polyakov loops in spatial directions and properties of temporal propagators using a new method local analysis, we conjecture that the conformal region exists together with the confining region and the deconfining region in the phase structure parametrized by beta and K, both in the cases of the large Nf QCD within the conformal window (referred as Conformal QCD) with an IR cutoff and small Nf QCD at T/Tc>1 with Tc being the chiral transition temperature (referred as High Temperature QCD). Our numerical simulation on a lattice of the size 16^3 x 64 shows the following evidence of the conjecture. In the conformal region we find the vacuum is the nontrivial Z(3) twisted vacuum modified by non-perturbative effects and temporal propagators of meson behave at large t as a power-law corrected Yukawa-type decaying form. The transition from the conformal region to the deconfining region or the confining region is a sharp transition between different vacua and therefore it suggests a first order transition both in Conformal QCD and in High Temperature QCD. Within our fixed lattice simulation, we find that there is a precise correspondence between Conformal QCD and High Temperature QCD in the temporal propagators under the change of the parameters Nf and T/Tc respectively. In particular, we find the correspondence between Conformal QCD with Nf = 7 and High Temperature QCD with Nf=2 at T ~ 2 Tc being in close relation to a meson unparticle model. From this we estimate the anomalous mass dimension gamma* = 1.2 (1) for Nf=7. We also show that the asymptotic state in the limit T/Tc --> infty is a free quark state in the Z(3) twisted vacuum.
We study an SU(3) gauge theory with Nf=8 degenerate flavors of light fermions in the fundamental representation. Using the domain wall fermion formulation, we investigate the light hadron spectrum, chiral condensate and electroweak S parameter. We consider a range of light fermion masses on two lattice volumes at a single gauge coupling chosen so that IR scales approximately match those from our previous studies of the two- and six-flavor systems. Our results for the Nf=8 spectrum suggest spontaneous chiral symmetry breaking, though fits to the fermion mass dependence of spectral quantities do not strongly disfavor the hypothesis of mass-deformed infrared conformality. Compared to Nf=2 we observe a significant enhancement of the chiral condensate relative to the symmetry breaking scale F, similar to the situation for Nf=6. The reduction of the S parameter, related to parity doubling in the vector and axial-vector channels, is also comparable to our six-flavor results.
We present details of a lattice study of infrared behaviour in SU(3) gauge theory with twelve massless fermions in the fundamental representation. Using the step-scaling method, we compute the coupling constant in this theory over a large range of scale. The renormalisation scheme in this work is defined by the ratio of Polyakov loops in the directions with different boundary conditions. We closely examine systematic effects, and find that they are dominated by errors arising from the continuum extrapolation. Our investigation suggests that SU(3) gauge theory with twelve flavours contains an infrared fixed point.