We adopt a covariant version of the naive dimensional analysis and construct the chiral two-nucleon contact Lagrangian constrained by Lorentz, parity, charge conjugation, hermitian conjugation, and chiral symmetries. We show that at $mathcal{O}(q^0)$, $mathcal{O}(q^2)$, $mathcal{O}(q^4)$, where $q$ denotes a generic small quantity, there are 4, 13, and 23 terms, respectively. We find that by performing $1/m_N$ expansions, the covariant Lagrangian reduces to the conventional non-relativistic one, which includes 2, 7, and 15 terms at each corresponding order.