No Arabic abstract
To achieve high efficiency and good performance of spintronic terahertz sources, we propose and corroborate a remnant magnetization method to radiate continuously and stably terahertz pulses from W/CoFeB/Pt magnetic nanofilms without carrying magnets on the transmitters driven by femtosecond laser pulses. We systematically investigate the influences of the pumping central wavelength and find out the optimal wavelength for a fixed sample thickness. We also optimize the incidence angle of the pumping laser and find the emission efficiency is enhanced under oblique incidence. Combing the aforementioned optimizations, we finally obtain comparable radiation efficiency and broadband spectra in W/CoFeB/Pt heterostructures compared with that from 1 mm thick ZnTe nonlinear crystals via optical rectification under the same pumping conditions of 100 fs pulse duration from a Ti:sapphire laser oscillator, which was not previously demonstrated under such pulse duration. We believe our observations not only benefit for a deep insight into the physics of femtosecond spin dynamics, but also help develop novel and cost-effective ultrabroadband spintronic terahertz emitters.
The ability to manipulate the electric-field vector of broadband terahertz waves is essential for applications of terahertz technologies in many areas, and can open up new possibilities for nonlinear terahertz spectroscopy and coherent control. Here, we propose a novel laser-driven terahertz emitter, consisting of metasurface-patterned magnetic multilayer heterostructures. Such hybrid terahertz emitters can combine the advantages of spintronic emitters for being ultrabroadband, efficient and flexible, as well as those of metasurfaces for the unique capability to manipulate terahertz waves with high precision and degree of freedom. Taking a stripe-patterned metasurface as an example, we demonstrate the generation of broadband terahertz waves with tunable chirality. Based on experimental and theoretical studies, the interplay between the laser-induced spintronic-origin currents and the metasurface-induced transient charges/currents are investigated, revealing the strong influence on the device functionality originated from both the light-matter interactions in individual metasurface units and the dynamic coupling between them. Our work not only offers a flexible, reliable and cost-effective solution for chiral terahertz wave generation and manipulation, but also opens a new pathway to metasurface-tailored spintronic devices for efficient vector-control of electromagnetic waves in the terahertz regime.
Flexible manipulation of terahertz-wave polarization during the generation process is very important for terahertz applications, especially for the next-generation on-chip functional terahertz sources. However, current terahertz emitters could not satisfy such demand, hence calling for new mechanism and conceptually new terahertz source. Here we demonstrate a magnetic-field-controlled, highly-efficient, cost-effective, and broadband terahertz source with flexible switch of terahertz polarization states in ferromagnetic heterostructures driven by femtosecond laser pulses. We verify that the chirality, azimuthal angle, and ellipticity of the generated elliptical terahertz waves can be independently manipulated by delicately engineering of the external applied magnetic fields via effectively manipulating the photo-induced spin currents. Such an ultrafast photomagnetic interaction-based, magnetic-field-controlled, and broadband tunable solid-state terahertz source integrated with terahertz polarization tunability function not only has the capability to reveal physical mechanisms of femtosecond spin dynamics, but also demonstrates the feasibility to realize novel on-chip terahertz functional devices, boosting the potential applications for controlling elementary molecular rotations, phonon vibrations, spin precessions, high-speed terahertz communication, and accelerating the development of ultrafast terahertz opto-spintronics.
We systematically study the pump-wavelength dependence of terahertz pulse generation in thin-film spintronic THz emitters composed of a ferromagnetic Fe layer between adjacent nonmagnetic W and Pt layers. We find that the efficiency of THz generation is essentially at for excitation by 150 fs pulses with center wavelengths ranging from 900 to 1500 nm, demonstrating that the spin current does not depend strongly on the pump photon energy. We show that the inclusion of dielectric overlayers of TiO2 and SiO2, designed for a particular excitation wavelength, can enhance the terahertz emission by a factor of of up to two in field.
Terahertz electromagnetic radiation is extremely useful for numerous applications such as imaging and spectroscopy. Therefore, it is highly desirable to have an efficient table-top emitter covering the 1-to-30-THz window whilst being driven by a low-cost, low-power femtosecond laser oscillator. So far, all solid-state emitters solely exploit physics related to the electron charge and deliver emission spectra with substantial gaps. Here, we take advantage of the electron spin to realize a conceptually new terahertz source which relies on tailored fundamental spintronic and photonic phenomena in magnetic metal multilayers: ultrafast photo-induced spin currents, the inverse spin-Hall effect and a broadband Fabry-Perot resonance. Guided by an analytical model, such spintronic route offers unique possibilities for systematic optimization. We find that a 5.8-nm-thick W/CoFeB/Pt trilayer generates ultrashort pulses fully covering the 1-to-30-THz range. Our novel source outperforms laser-oscillator-driven emitters such as ZnTe(110) crystals in terms of bandwidth, terahertz-field amplitude, flexibility, scalability and cost.
We demonstrate a high temperature performance quantum detector of Terahertz (THz) radiation based on three-dimensional metamaterial. The metamaterial unit cell consists of an inductor-capacitor (LC) resonator laterally coupled with antenna elements. The absorbing region, consisting of semiconductor quantum wells is contained in the strongly ultra-subwavelength capacitors of the LC structure. The high radiation loss of the antenna allows strongly increased collection efficiency for the incident THz radiation, while the small effective volume of the LC resonator allows intense light-matter coupling with reduced electrical area. As a result, our detectors operates at much higher temperatures than conventional quantum well detectors demonstrated so far.