Do you want to publish a course? Click here

R-band light-curve properties of Type Ia supernovae from the (intermediate) Palomar Transient Factory

77   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the best 265 sampled R-band light curves of spectroscopically identified Type Ia supernovae (SNe) from the Palomar Transient Factory (PTF; 2009-2012) survey and the intermediate Palomar Transient Factory (iPTF; 2013-2017). A model-independent light curve template is built from our data-set with the purpose to investigate average properties and diversity in our sample. We searched for multiple populations in the light curve properties using machine learning tools. We also utilised the long history of our light curves, up to 4000 days, to exclude any significant pre- or post- supernova flares. From the shapes of light curves we found the average rise time in the R band to be $16.8^{+0.5}_{-0.6}$ days. Although PTF/iPTF were single-band surveys, by modelling the residuals of the SNe in the Hubble-Lema^{i}tre diagram, we estimate the average colour excess of our sample to be $<$E$($B$-$V$)> approx 0.05(2)$ mag and thus the mean corrected peak brightness to be $M_R = -19.02pm0.02$ $+5 log( {rm H}_0 [{rm km} cdot{rm s}^{-1} {rm Mpc}^{-1}]/70)$ mag with only weakly dependent on light curve shape. The intrinsic scatter is found to be $sigma_R = 0.186 pm 0.033$ mag for the redshift range $0.05<z<0.1$, without colour corrections of individual SNe. Our analysis shows that Malmquist bias becomes very significant at z=0.13. A similar limitation is expected for the ongoing Zwicky Transient Facility (ZTF) survey using the same telescope, but new camera expressly designed for ZTF.



rate research

Read More

Type Ic supernovae represent the explosions of the most stripped massive stars, but their progenitors and explosion mechanisms remain unclear. Larger samples of observed supernovae can help characterize the population of these transients. We present an analysis of 44 spectroscopically normal Type Ic supernovae, with focus on the light curves. The photometric data were obtained over 7 years with the Palomar Transient Factory (PTF) and its continuation, the intermediate Palomar Transient Factory (iPTF). This is the first homogeneous and large sample of SNe Ic from an untargeted survey, and we aim to estimate explosion parameters for the sample. We present K-corrected Bgriz light curves of these SNe, obtained through photometry on template-subtracted images. We performed an analysis on the shape of the $r$-band light curves and confirmed the correlation between the rise parameter Delta m_{-10} and the decline parameter Delta m_{15}. Peak r-band absolute magnitudes have an average of -17.71 +- 0.85 mag. To derive the explosion epochs, we fit the r-band lightcurves to a template derived from a well-sampled light curve. We computed the bolometric light curves using r and g band data, g-r colors and bolometric corrections. Bolometric light curves and Fe II lambda 5169 velocities at peak were used to fit to the Arnett semianalytic model in order to estimate the ejecta mass M_{ej}, the explosion energy E_{K} and the mass of radioactive nickel (M(56) Ni) for each SN. Including 41 SNe, we find average values of <M_{ej}>=4.50 +-0.79 msun, <E_{K}>=1.79 +- 0.29 x10^{51} erg, and <M(56)Ni)>= 0.19 +- 0.03 msun. The explosion-parameter distributions are comparable to those available in the literature, but our large sample also includes some transients with narrow and very broad light curves leading to more extreme ejecta masses values.
We study 34 Type Ic supernovae that have broad spectral features (SNe Ic-BL). We obtained our photometric data with the Palomar Transient Factory (PTF) and its continuation, the intermediate Palomar Transient Factory (iPTF). This is the first large, homogeneous sample of SNe Ic-BL from an untargeted survey. Furthermore, given the high cadence of (i)PTF, most of these SNe were discovered soon after explosion. We present K-corrected $Bgriz$ light curves of these SNe, obtained through photometry on template-subtracted images. We analyzed the shape of the $r$-band light curves, finding a correlation between the decline parameter $Delta m_{15}$ and the rise parameter $Delta m_{-10}$. We studied the SN colors and, based on $g-r$, we estimated the host-galaxy extinction. Peak $r$-band absolute magnitudes have an average of $-18.6pm0.5$ mag. We fit each $r$-band light curve with that of SN 1998bw (scaled and stretched) to derive the explosion epochs. We computed the bolometric light curves using bolometric corrections, $r$-band data, and $g-r$ colors. Expansion velocities from Fe II were obtained by fitting spectral templates of SNe Ic. Bolometric light curves and velocities at peak were fitted using the semianalytic Arnett model to estimate ejecta mass $M_{rm ej}$, explosion energy $E_{K}$ and $^{56}$Ni mass $M(^{56}$Ni). We find average values of $M_{rm ej} = 4pm3~{rm M}_{odot}$, $E_{K} = (7pm6) times 10^{51}~$erg, and $M(^{56}$Ni) $= 0.31pm0.16~{rm M}_{odot}$. We also estimated the degree of $^{56}$Ni mixing using scaling relations derived from hydrodynamical models and we find that all the SNe are strongly mixed. The derived explosion parameters imply that at least 21% of the progenitors of SNe Ic-BL are compatible with massive ($>28~{rm M}_{odot}$), possibly single stars, whereas at least 64% might come from less massive stars in close binary systems.
We investigate the light-curve properties of a sample of 26 spectroscopically confirmed hydrogen-poor superluminous supernovae (SLSNe-I) in the Palomar Transient Factory (PTF) survey. These events are brighter than SNe Ib/c and SNe Ic-BL, on average, by about 4 and 2~mag, respectively. The peak absolute magnitudes of SLSNe-I in rest-frame $g$ band span $-22lesssim M_g lesssim-20$~mag, and these peaks are not powered by radioactive $^{56}$Ni, unless strong asymmetries are at play. The rise timescales are longer for SLSNe than for normal SNe Ib/c, by roughly 10 days, for events with similar decay times. Thus, SLSNe-I can be considered as a separate population based on photometric properties. After peak, SLSNe-I decay with a wide range of slopes, with no obvious gap between rapidly declining and slowly declining events. The latter events show more irregularities (bumps) in the light curves at all times. At late times, the SLSN-I light curves slow down and cluster around the $^{56}$Co radioactive decay rate. Powering the late-time light curves with radioactive decay would require between 1 and 10${rm M}_odot$ of Ni masses. Alternatively, a simple magnetar model can reasonably fit the majority of SLSNe-I light curves, with four exceptions, and can mimic the radioactive decay of $^{56}$Co, up to $sim400$ days from explosion. The resulting spin values do not correlate with the host-galaxy metallicities. Finally, the analysis of our sample cannot strengthen the case for using SLSNe-I for cosmology.
We present an investigation of the optical spectra of 264 low-redshift (z < 0.2) Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory, an untargeted transient survey. We focus on velocity and pseudo-equivalent width measurements of the Si II 4130, 5972, and 6355 A lines, as well those of the Ca II near-infrared (NIR) triplet, up to +5 days relative to the SN B-band maximum light. We find that a high-velocity component of the Ca II NIR triplet is needed to explain the spectrum in ~95 per cent of SNe Ia observed before -5 days, decreasing to ~80 per cent at maximum. The average velocity of the Ca II high-velocity component is ~8500 km/s higher than the photospheric component. We confirm previous results that SNe Ia around maximum light with a larger contribution from the high-velocity component relative to the photospheric component in their Ca II NIR feature have, on average, broader light curves and lower Ca II NIR photospheric velocities. We find that these relations are driven by both a stronger high-velocity component and a weaker contribution from the photospheric Ca II NIR component in broader light curve SNe Ia. We identify the presence of C II in very-early-time SN Ia spectra (before -10 days), finding that >40 per cent of SNe Ia observed at these phases show signs of unburnt material in their spectra, and that C II features are more likely to be found in SNe Ia having narrower light curves.
We present ultraviolet through near-infrared photometry and spectroscopy of the host galaxies of all superluminous supernovae (SLSNe) discovered by the Palomar Transient Factory prior to 2013, and derive measurements of their luminosities, star-formation rates, stellar masses, and gas-phase metallicities. We find that Type I (hydrogen-poor) SLSNe are found almost exclusively in low-mass (M < 2x10^9 M_sun) and metal-poor (12+log[O/H] < 8.4) galaxies. We compare the mass and metallicity distributions of our sample to nearby galaxy catalogs in detail and conclude that the rate of SLSNe-I as a fraction of all SNe is heavily suppressed in galaxies with metallicities >0.5 Z_sun. Extremely low metallicities are not required, and indeed provide no further increase in the relative SLSN rate. Several SLSN-I hosts are undergoing vigorous starbursts, but this may simply be a side effect of metallicity dependence: dwarf galaxies tend to have bursty star-formation histories. Type-II (hydrogen-rich) SLSNe are found over the entire range of galaxy masses and metallicities, and their integrated properties do not suggest a strong preference for (or against) low-mass/low-metallicity galaxies. Two hosts exhibit unusual properties: PTF 10uhf is a Type I SLSN in a massive, luminous infrared galaxy at redshift z=0.29, while PTF 10tpz is a Type II SLSN located in the nucleus of an early-type host at z=0.04.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا