Do you want to publish a course? Click here

Incommensurate Chiral CDW in $1T$-VSe$_2$

73   0   0.0 ( 0 )
 Added by Atsushi Nomura
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated the chiral charge-density wave (CDW) in $1T$-VSe$_2$ using scanning tunneling microscopy (STM) measurements and optical polarimetry measurements. With the STM mesurements, we revealed that the CDW intensities along each triple-$q$ directions are different. Thus the rotational symmetry of $1T$-VSe$_2$ is lower than that in typical two-dimentional triple-$q$ CDWs. We found that the CDW peaks form a kagome lattice rather than a triangular lattice. The Friedel oscillations have the chirality and the periodicity reflected properties of the background CDW. With the optical measurements in $1T$-VSe$_2$, we also observed a lower rotational symmetry with the polarization dependence of the transient reflectivity variation, which is consistent with the STM result on a microscopic scale. Both $1T$-TiSe$_2$ and $1T$-VSe$_2$ show chiral CDWs, which implies that such waves are usual for CDWs with the condition $H_mathrm{CDW} equiv q_{1}cdot(q_{2} times q_{3}) eq0$.



rate research

Read More

We investigate the low-temperature charge-density-wave (CDW) state of bulk TaS$_2$ with a fully self-consistent DFT+U approach, over which the controversy has remained unresolved regarding the out-of-plane metallic band. By examining the innate structure of the Hubbard U potential, we reveal that the conventional use of atomic-orbital basis could seriously misevaluate the electron correlation in the CDW state. By adopting a generalized basis, covering the whole David star, we successfully reproduce the Mott insulating nature with the layer-by-layer antiferromagnetic order. Similar consideration should be applied for description of the electron correlation in molecular solid.
The capability to isolate one to few unit-cell thin layers from the bulk matrix of layered compounds opens fascinating prospects to engineer novel electronic phases. However, a comprehensive study of the thickness dependence and of potential extrinsic effects are paramount to harness the electronic properties of such atomic foils. One striking example is the charge density wave (CDW) transition temperature in layered dichalcogenides whose thickness dependence remains unclear in the ultrathin limit. Here we present a detailed study of the thickness and temperature dependences of the CDW in VSe$_2$ by scanning tunnelling microscopy (STM). We show that mapping the real-space CDW periodicity over a broad thickness range unique to STM provides essential insight. We introduce a robust derivation of the local order parameter and transition temperature based on the real space charge modulation amplitude. Both quantities exhibit a striking non-monotonic thickness dependence that we explain in terms of a 3D to 2D dimensional crossover in the FS topology. This finding highlights thickness as a true tuning parameter of the electronic ground state and reconciles seemingly contradicting thickness dependencies determined in independent transport studies.
We report temperature-dependent transport and x-ray diffraction measurements of the influence of Ti hole doping on the charge density wave (CDW) in 1T-Ta(1-x)Ti(x)S(2). Confirming past studies, we find that even trace impurities eliminate the low-temperature commensurate (C) phase in this system. Surprisingly, the magnitude of the in-plane component of the CDW wave vector in the nearly commensurate (NC) phase does not change significantly with Ti concentration, as might be expected from a changing Fermi surface volume. Instead, the angle of the CDW in the basal plane rotates, from 11.9 deg at x=0 to 16.4 deg at x=0.12. Ti substitution also leads to an extended region of coexistence between incommensurate (IC) and NC phases, indicating heterogeneous nucleation near the transition. Finally, we explain a resistive anomaly originally observed by DiSalvo [F. J. DiSalvo, et al., Phys. Rev. B {bf 12}, 2220 (1975)] as arising from pinning of the CDW on the crystal lattice. Our study highlights the importance of commensuration effects in the NC phase, particularly at x ~ 0.08.
Thinning crystalline materials to two dimensions (2D) creates a rich playground for electronic phases, including charge, spin, superconducting and topological order. Bulk materials hosting charge density waves (CDWs), when reduced to ultrathin films, have shown CDW enhancement and tunability. However, charge order confined to only 2D remains elusive. Here we report a distinct charge ordered state emerging in the monolayer limit of 1T-VSe$_2$. Systematic scanning tunneling microscopy experiments reveal that bilayer VSe$_2$ largely retains the bulk electronic structure, hosting a tri-directional CDW. However, monolayer VSe$_2$ exhibits a dimensional crossover, hosting two CDWs with distinct wavelengths. Electronic structure calculations reveal that while one CDW is bulk-like and arises from the well-known Peierls mechanism, the other is decidedly unconventional. The observed CDW-lattice decoupling and the emergence of a flat band suggest that the new CDW arises from enhanced electron-electron interactions in the 2D limit. These findings establish monolayer-VSe$_2$ as the first host of coexisting charge orders with distinct origins, opening the door to tailoring electronic phenomena via emergent interactions in 2D materials.
291 - Z. X. Wang , Q. M. Liu , L. Y. Shi 2019
The dynamical properties of single crystal 1T-TaS$_{2}$ are investigated both in commensurate charge density wave state (CCDW state) and hidden charge density wave state (HCDW state). We develop a useful criterion in time-domain transmission terahertz measurement to judge whether the compound is driven into a metastable state or still in its virgin state. An increase of terahertz conductivity by two orders of magnitude from CCDW state to HCDW state is obtained by taking account of the penetration depth mismatch, which is in agreement with reported emph{dc} transport measurement. Upon weak pumping, only transient processes with rapid decay dynamics are triggered in both CCDW and HCDW states. We compare the conductivity increases in terahertz frequency range between transient and HCDW states and suggest that fluctuated metallic domain walls may develop in the transient states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا