We describe a setup and procedures for contactless optical 3D-metrology of silicon micro-strip sensors. Space points are obtained by video microscopy and a high precision XY-table. The XY-dimensions are obtained from the movement of the table and pattern recognition, while the Z-dimension results from a Fast Fourier Transformation analyses of microscopic images taken at various distances of the optical system from the object under investigation. The setup is employed to measure the position of silicon sensors mounted onto a carbon fibre structure with a precision of a few microns.
We describe a setup for optical quality assurance of silicon microstrip sensors. Pattern recognition algorithms were developed to analyze microscopic scans of the sensors for defects. It is shown that the software has a recognition and classification rate of $>$~90% for defects like scratches, shorts, broken metal lines etc. We have demonstrated that advanced image processing based on neural network techniques is able to further improve the recognition and defect classification rate.
Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC)) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance.
Silicon pad sensors with novel functions of higher timing resolution (LGAD: Low Gain Avalanche Detector) and higher position resolution (PSD: Position Sensitive Detector) are studied for an application to Silicon-Tungsten electromagnetic calorimeter for a detector of the International Linear Collider (ILC). Prototype sensors are fabricated, equipped with dedicated ASICs (Application-Specific Integrated Circuits) and tested with a positron beam as well as a radioisotope. The first results of the measurements of timing resolution with LGADs and position reconstruction with PSDs are reported.
Silicon based micropattern detectors are essential elements of modern high energy physics experiments. Cost effectiveness and high radiation resistance are two important requirements for technologies to be used in inner tracking devices. Processes based on p-type substrates have very strong appeal for these applications. Recent results and prototype efforts under way are reviewed.
Several future high-energy physics facilities are currently being planned. The proposed projects include high energy $e^+ e^-$ circular and linear colliders, hadron colliders and muon colliders, while the Electron-Ion Collider (EIC) has already been approved for construction at the Brookhaven National Laboratory. Each proposal has its own advantages and disadvantages in term of readiness, cost, schedule and physics reach, and each proposal requires the design and production of specific new detectors. This paper first presents the performances required to the future silicon tracking systems at the various new facilities, and then it illustrates a few possibilities for the realization of such silicon trackers. The challenges posed by the future facilities require a new family of silicon detectors, where features such as impact ionization, radiation damage saturation, charge sharing, and analog readout are exploited to meet these new demands.