Using Multitask Learning to Improve 12-Lead Electrocardiogram Classification


Abstract in English

We develop a multi-task convolutional neural network (CNN) to classify multiple diagnoses from 12-lead electrocardiograms (ECGs) using a dataset comprised of over 40,000 ECGs, with labels derived from cardiologist clinical interpretations. Since many clinically important classes can occur in low frequencies, approaches are needed to improve performance on rare classes. We compare the performance of several single-class classifiers on rare classes to a multi-headed classifier across all available classes. We demonstrate that the addition of common classes can significantly improve CNN performance on rarer classes when compared to a model trained on the rarer class in isolation. Using this method, we develop a model with high performance as measured by F1 score on multiple clinically relevant classes compared against the gold-standard cardiologist interpretation.

Download