We use a spectral theory perspective to reconsider properties of the Riemann zeta function. In particular, new integral representations are derived and used to present its value at odd positive integers.
We study elements of the spectral theory of compact hyperbolic orbifolds $Gamma backslash mathbb{H}^{n}$. We establish a version of the Selberg trace formula for non-unitary representations of $Gamma$ and prove that the associated Selberg zeta function admits a meromorphic continuation to $mathbb{C}$.
We present several formulae for the large $t$ asymptotics of the Riemann zeta function $zeta(s)$, $s=sigma+i t$, $0leq sigma leq 1$, $t>0$, which are valid to all orders. A particular case of these results coincides with the classical results of Siegel. Using these formulae, we derive explicit representations for the sum $sum_a^b n^{-s}$ for certain ranges of $a$ and $b$. In addition, we present precise estimates relating this sum with the sum $sum_c^d n^{s-1}$ for certain ranges of $a, b, c, d$. We also study a two-parameter generalization of the Riemann zeta function which we denote by $Phi(u,v,beta)$, $uin mathbb{C}$, $vin mathbb{C}$, $beta in mathbb{R}$. Generalizing the methodology used in the study of $zeta(s)$, we derive asymptotic formulae for $Phi(u,v,beta)$.
Voronins theorem on the `Universality of Riemann zeta function is shown to imply that Riemann zeta function is a fractal (in the sense that Mandelbrot set is a fractal) and a concrete ``representation of the ``giant book of theorems that Paul Halmos referred to.
In 2008 I thought I found a proof of the Riemann Hypothesis, but there was an error. In the Spring 2020 I believed to have fixed the error, but it cannot be fixed. I describe here where the error was. It took me several days to find the error in a careful checking before a possible submission to a payable review offered by one leading journal. There were three simple lemmas and one simple theorem, all were correct, yet there was an error: what Lemma 2 proved was not exactly what Lemma 3 needed. So, it was the connection of the lemmas. This paper came out empty, but I have found a different proof of the Riemann Hypothesis and it seems so far correct. In the discussion at the end of this paper I raise a matter that I think is of importance to the review process in mathematics.