Do you want to publish a course? Click here

Towards Secure and Efficient Payment Channels

90   0   0.0 ( 0 )
 Added by Georgia Avarikioti
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Micropayment channels are the most prominent solution to the limitation on transaction throughput in current blockchain systems. However, in practice channels are risky because participants have to be online constantly to avoid fraud, and inefficient because participants have to open multiple channels and lock funds in them. To address the security issue, we propose a novel mechanism that involves watchtowers incentivized to watch the channels and reveal a fraud. Our protocol does not require participants to be online constantly watching the blockchain. The protocol is secure, incentive compatible and lightweight in communication. Furthermore, we present an adaptation of our protocol implementable on the Lightning protocol. Towards efficiency, we examine specific topological structures in the blockchain transaction graph and generalize the construction of channels to enable topologies better suited to specific real-world needs. In these cases, our construction reduces the required amount of signatures for a transaction and the total amount of locked funds in the system.



rate research

Read More

123 - Bowen Liu , Siwei Sun (2 2020
The recent development of payment channels and their extensions (e.g., state channels) provides a promising scalability solution for blockchains which allows untrusting parties to transact off-chain and resolve potential disputes via on-chain smart contracts. To protect participants who have no constant access to the blockchain, a watching service named as watchtower is proposed -- a third-party entity obligated to monitor channel states (on behalf of the participants) and correct them on-chain if necessary. Unfortunately, currently proposed watchtower schemes suffer from multiple security and efficiency drawbacks. In this paper, we explore the design space behind watchtowers. We propose a novel watching service named as fail-safe watchtowers. In contrast to prior proposed watching services, our fail-safe watchtower does not watch on-chain smart contracts constantly. Instead, it only sends a single on-chain message periodically confirming or denying the final states of channels being closed. Our watchtowers can easily handle a large number of channels, are privacy-preserving, and fail-safe tolerating multiple attack vectors. Furthermore, we show that watchtowers (in general) may be an option economically unjustified for multiple payment scenarios and we introduce a simple, yet powerful concept of short-lived assertions which can mitigate misbehaving parties in these scenarios.
JUBILEE is a securely computed mechanism for debt relief and forgiveness in a frictionless manner without involving trusted third parties, leading to more harmonious debt settlements by incentivising the parties to truthfully reveal their private information. JUBILEE improves over all previous methods: - individually rational, incentive-compatible, truthful/strategy-proof, ex-post efficient, optimal mechanism for debt relief and forgiveness with private information - by the novel introduction of secure computation techniques to debt relief, the blessing of the debtor is hereby granted for the first time: debt settlements with higher expected profits and a higher probability of success than without using secure computation A simple and practical implementation is included for The Secure Spreadsheet. Another implementation is realised using Raziel smart contracts on a blockchain with Pravuil consensus.
Off-chain protocols (channels) are a promising solution to the scalability and privacy challenges of blockchain payments. Current proposals, however, require synchrony assumptions to preserve the safety of a channel, leaking to an adversary the exact amount of time needed to control the network for a successful attack. In this paper, we introduce Brick, the first payment channel that remains secure under network asynchrony and concurrently provides correct incentives. The core idea is to incorporate the conflict resolution process within the channel by introducing a rational committee of external parties, called Wardens. Hence, if a party wants to close a channel unilaterally, it can only get the committees approval for the last valid state. Brick provides sub-second latency because it does not employ heavy-weight consensus. Instead, Brick uses consistent broadcast to announce updates and close the channel, a light-weight abstraction that is powerful enough to preserve safety and liveness to any rational parties. Furthermore, we consider permissioned blockchains, where the additional property of auditability might be desired for regulatory purposes. We introduce Brick+, an off-chain construction that provides auditability on top of Brick without conflicting with its privacy guarantees. We formally define the properties our payment channel construction should fulfill, and prove that both Brick and Brick+ satisfy them. We also design incentives for Brick such that honest and rational behavior aligns. Finally, we provide a reference implementation of the smart contracts in Solidity.
Truthful spectrum auctions have been extensively studied in recent years. Truthfulness makes bidders bid their true valuations, simplifying greatly the analysis of auctions. However, revealing ones true valuation causes severe privacy disclosure to the auctioneer and other bidders. To make things worse, previous work on secure spectrum auctions does not provide adequate security. In this paper, based on TRUST, we propose PS-TRUST, a provably secure solution for truthful double spectrum auctions. Besides maintaining the properties of truthfulness and special spectrum reuse of TRUST, PS-TRUST achieves provable security against semi-honest adversaries in the sense of cryptography. Specifically, PS-TRUST reveals nothing about the bids to anyone in the auction, except the auction result. To the best of our knowledge, PS-TRUST is the first provably secure solution for spectrum auctions. Furthermore, experimental results show that the computation and communication overhead of PS-TRUST is modest, and its practical applications are feasible.
Wireless Sensor Networks (WSNs) rely on in-network aggregation for efficiency, however, this comes at a price: A single adversary can severely influence the outcome by contributing an arbitrary partial aggregate value. Secure in-network aggregation can detect such manipulation. But as long as such faults persist, no aggregation result can be obtained. In contrast, the collection of individual sensor node values is robust and solves the problem of availability, yet in an inefficient way. Our work seeks to bridge this gap in secure data collection: We propose a system that enhances availability with an efficiency close to that of in-network aggregation. To achieve this, our scheme relies on costly operations to localize and exclude nodes that manipulate the aggregation, but emph{only} when a failure is detected. The detection of aggregation disruptions and the removal of faulty nodes provides robustness. At the same time, after removing faulty nodes, the WSN can enjoy low cost (secure) aggregation. Thus, the high exclusion cost is amortized, and efficiency increases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا