Do you want to publish a course? Click here

Fast and Flexible Indoor Scene Synthesis via Deep Convolutional Generative Models

314   0   0.0 ( 0 )
 Added by Kai Wang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present a new, fast and flexible pipeline for indoor scene synthesis that is based on deep convolutional generative models. Our method operates on a top-down image-based representation, and inserts objects iteratively into the scene by predicting their category, location, orientation and size with separate neural network modules. Our pipeline naturally supports automatic completion of partial scenes, as well as synthesis of complete scenes. Our method is significantly faster than the previous image-based method and generates result that outperforms it and other state-of-the-art deep generative scene models in terms of faithfulness to training data and perceived visual quality.



rate research

Read More

We present a deep generative scene modeling technique for indoor environments. Our goal is to train a generative model using a feed-forward neural network that maps a prior distribution (e.g., a normal distribution) to the distribution of primary objects in indoor scenes. We introduce a 3D object arrangement representation that models the locations and orientations of objects, based on their size and shape attributes. Moreover, our scene representation is applicable for 3D objects with different multiplicities (repetition counts), selected from a database. We show a principled way to train this model by combining discriminator losses for both a 3D object arrangement representation and a 2D image-based representation. We demonstrate the effectiveness of our scene representation and the deep learning method on benchmark datasets. We also show the applications of this generative model in scene interpolation and scene completion.
We present an interactive approach to synthesizing realistic variations in facial hair in images, ranging from subtle edits to existing hair to the addition of complex and challenging hair in images of clean-shaven subjects. To circumvent the tedious and computationally expensive tasks of modeling, rendering and compositing the 3D geometry of the target hairstyle using the traditional graphics pipeline, we employ a neural network pipeline that synthesizes realistic and detailed images of facial hair directly in the target image in under one second. The synthesis is controlled by simple and sparse guide strokes from the user defining the general structural and color properties of the target hairstyle. We qualitatively and quantitatively evaluate our chosen method compared to several alternative approaches. We show compelling interactive editing results with a prototype user interface that allows novice users to progressively refine the generated image to match their desired hairstyle, and demonstrate that our approach also allows for flexible and high-fidelity scalp hair synthesis.
90 - Lan Chen , Lin Gao , Jie Yang 2021
In physics-based cloth animation, rich folds and detailed wrinkles are achieved at the cost of expensive computational resources and huge labor tuning. Data-driven techniques make efforts to reduce the computation significantly by a database. One type of methods relies on human poses to synthesize fitted garments which cannot be applied to general cloth. Another type of methods adds details to the coarse meshes without such restrictions. However, existing works usually utilize coordinate-based representations which cannot cope with large-scale deformation, and requires dense vertex correspondences between coarse and fine meshes. Moreover, as such methods only add details, they require coarse meshes to be close to fine meshes, which can be either impossible, or require unrealistic constraints when generating fine meshes. To address these challenges, we develop a temporally and spatially as-consistent-as-possible deformation representation (named TS-ACAP) and a DeformTransformer network to learn the mapping from low-resolution meshes to detailed ones. This TS-ACAP representation is designed to ensure both spatial and temporal consistency for sequential large-scale deformations from cloth animations. With this representation, our DeformTransformer network first utilizes two mesh-based encoders to extract the coarse and fine features, respectively. To transduct the coarse features to the fine ones, we leverage the Transformer network that consists of frame-level attention mechanisms to ensure temporal coherence of the prediction. Experimental results show that our method is able to produce reliable and realistic animations in various datasets at high frame rates: 10 ~ 35 times faster than physics-based simulation, with superior detail synthesis abilities than existing methods.
140 - Zhuoman Liu , Wei Jia , Ming Yang 2021
View synthesis aims to produce unseen views from a set of views captured by two or more cameras at different positions. This task is non-trivial since it is hard to conduct pixel-level matching among different views. To address this issue, most existing methods seek to exploit the geometric information to match pixels. However, when the distinct cameras have a large baseline (i.e., far away from each other), severe geometry distortion issues would occur and the geometric information may fail to provide useful guidance, resulting in very blurry synthesized images. To address the above issues, in this paper, we propose a novel deep generative model, called Self-Consistent Generative Network (SCGN), which synthesizes novel views from the given input views without explicitly exploiting the geometric information. The proposed SCGN model consists of two main components, i.e., a View Synthesis Network (VSN) and a View Decomposition Network (VDN), both employing an Encoder-Decoder structure. Here, the VDN seeks to reconstruct input views from the synthesized novel view to preserve the consistency of view synthesis. Thanks to VDN, SCGN is able to synthesize novel views without using any geometric rectification before encoding, making it easier for both training and applications. Finally, adversarial loss is introduced to improve the photo-realism of novel views. Both qualitative and quantitative comparisons against several state-of-the-art methods on two benchmark tasks demonstrated the superiority of our approach.
We study the problem of novel view synthesis of a scene comprised of 3D objects. We propose a simple yet effective approach that is neither continuous nor implicit, challenging recent trends on view synthesis. We demonstrate that although continuous radiance field representations have gained a lot of attention due to their expressive power, our simple approach obtains comparable or even better novel view reconstruction quality comparing with state-of-the-art baselines while increasing rendering speed by over 400x. Our model is trained in a category-agnostic manner and does not require scene-specific optimization. Therefore, it is able to generalize novel view synthesis to object categories not seen during training. In addition, we show that with our simple formulation, we can use view synthesis as a self-supervision signal for efficient learning of 3D geometry without explicit 3D supervision.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا