Extreme multiexciton emission from deterministically assembled single emitter subwavelength plasmonic patch antennas


Abstract in English

Plasmonic antennas are attractive optical structures for many applications in nano and quantum technologies. By providing enhanced interaction between a nanoemitter and light, they efficiently accelerate and direct spontaneous emission. One challenge, however, is the precise nanoscale positioning of the emitter in the structure. Here we present a laser etching protocol that deterministically positions a single colloidal CdSe/CdS core/shell quantum dot emitter inside a subwavelength plasmonic patch antenna with three-dimensional nanoscale control. By exploiting the properties of metal-insulator-metal structures at the nanoscale, the fabricated single emitter antenna exhibits an extremely high Purcell factor (>72) and brightness enhancement by a factor of 70. Due to the unprecedented quenching of Auger processes and the strong acceleration of multiexciton emission, more than 4 photons per pulse can be emitted by a single quantum dot. Our technology permits the fabrication of bright room-temperature single-emitter sources emitting either multiple or single photons.

Download