Amorphous materials are coming within reach of realistic computer simulations, but new approaches are needed to fully understand their intricate atomic structures. Here, we show how machine-learning (ML)-based techniques can give new, quantitative chemical insight into the atomic-scale structure of amorphous silicon (a-Si). Based on a similarity function (kernel), we define a structural metric that unifies the description of nearest- and next-nearest-neighbor environments in the amorphous state. We apply this to an ensemble of a-Si networks, generated in melt-quench simulations with an ML-based interatomic potential, in which we tailor the degree of ordering by varying the quench rates down to $10^{10}$ K/s (leading to a structural model that is lower in energy than the established WWW network). We then show how machine-learned atomic energies permit a chemical interpretation, associating coordination defects in a-Si with distinct energetic stability regions. The approach is straightforward and inexpensive to apply to arbitrary structural models, and it is therefore expected to have more general significance for developing a quantitative understanding of the amorphous state.