Do you want to publish a course? Click here

Nano-fabrication and characterization of silicon meta-surfaces provided with Pancharatnam-Berry effect

122   0   0.0 ( 0 )
 Added by Gianluca Ruffato
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, the implementation of optical elements in the form of Pancharatnam-Berry optics is considered. With respect to 3D bulk and diffractive optics, acting on the dynamic phase of light, Pancharatnam-Berry optical elements transfer a phase which is geometric in nature by locally manipulating the polarization state of the incident beam. They can be realized as space-variant sub-wavelengths gratings that behave like inhomogeneous form-birefringent materials. We present a comprehensive work of simulation, realization, and optical characterization at the telecom wavelength of 1310 nm of the constitutive linear grating cell, whose fabrication has been finely tuned in order to get a {pi}-phase delay and obtain a maximum in the diffraction efficiency. The optical design in the infrared region allows the use of silicon as candidate material due to its transparency. In order to demonstrate the possibility to assemble the single grating cells for generating more complex phase patterns, the implementation of two Pancharatnam-Berry optical elements is considered: a blazed grating and an optical vortices demultiplexer.



rate research

Read More

Parallel sorting of orbital angular momentum (OAM) and polarization has recently acquired paramount importance and interest in a wide range of fields ranging from telecommunications to high-dimensional quantum cryptography. Due to their inherently polarization-sensitive optical response, optical elements acting on the geometric phase prove to be useful for processing structured light beams with orthogonal polarization states by means of a single optical platform. In this work, we present the design, fabrication and test of a Pancharatnam-Berry optical element in silicon implementing a log-pol optical transformation at 1310 nm for the realization of an OAM sorter based on the conformal mapping between angular and linear momentum states. The metasurface is realized in the form of continuously-variant subwavelength gratings, providing high-resolution in the definition of the phase pattern. A hybrid device is fabricated assembling the metasurface for the geometric phase control with multi-level diffractive optics for the polarization-independent manipulation of the dynamic phase. The optical characterization confirms the capability to sort orbital angular momentum and circular polarization at the same time.
Simple vacuum evaporation technique for deposition of dyes on various solid surfaces has been developed. The method is compatible with conventional solvent-free nanofabrication processing enabling fabrication of nanoscale optoelectronic devices. Thin films of fluorescein were deposited on glass, fluorine-tin-oxide (FTO) coated glass with and without atomically layer deposited (ALD) nanocrystalline 20 nm thick anatase TiO2 coating. Surface topology, absorption and emission spectra of the films depends on their thickness and the material of supporting substrate. On a smooth glass surface the dye initially formes islands before merging into a uniform layer after 5 to 10 monolayers. On FTO covered glass the absorption spectra are similar to fluorescein solution in ethanol. Absorption spectra on ALD-TiO2 is red shifted compared to the film deposited on bare FTO. The corresponding emission spectra at {lambda} = 458 nm excitation show various thickness and substrate dependent features, while the emission of films deposited on TiO2 is quenched due to the effective electron transfer to the semiconductor conduction band.
Graphene and graphene-based materials exhibit exceptional optical and electrical properties with great promise for novel applications in light detection. However, several challenges prevent the full exploitation of these properties in commercial devices. Such challenges include the limited linear dynamic range (LDR) of graphene-based photodetectors, the lack of efficient generation and extraction of photoexcited charges, the smearing of photoactive junctions due to hot-carriers effects, large-scale fabrication and ultimately the environmental stability of the constituent materials. In order to overcome the aforementioned limits, different approaches to tune the properties of graphene have been explored. A new class of graphene-based devices has emerged where chemical functionalisation, hybridisation with light-sensitising materials and the formation of heterostructures with other 2D materials have led to improved performance, stability or versatility. For example, intercalation of graphene with FeCl$_3$ is highly stable in ambient conditions and can be used to define photo-active junctions characterized by an unprecedented LDR while graphene oxide (GO) is a very scalable and versatile material which supports the photodetection from UV to THz frequencies. Nanoparticles and quantum dots have been used to enhance the absorption of pristine graphene and to enable high gain thanks to the photogating effect. In the same way, hybrid detectors made from stacked sequences of graphene and layered transition-metal dichalcogenides enabled a class of detectors with high gain and responsivity. In this work we will review the performance and advances in functionalised graphene and hybrid photodetectors, with particular focus on the physical mechanisms governing the photoresponse in these materials, their performance and possible future paths of investigation.
Celitement is a new type of cement that is based on hydraulic calcium-hydrosilicate (hCHS) that possesses a potential for minimizing the ratio C/S from above 3 in OPC down to 1, which significantly reduces the amount of CO$_2$ released during processing. The reaction kinetics of hCHS differs from that of classical clinker phases due to the presence of highly reactive silicate species, which involve silanol groups instead of pure calcium silicates and aluminates and aluminoferrites. In contrast to Portland cement, no calcium hydroxide is formed during hydration, which otherwise regulates the Ca concentration. Without the buffering role of Ca(OH)$_2$ the concentration of the dissolved species c(Ca$^{2+}$) and c(SiO$_4^{4-}$) and the corresponding pH must be controlled to ensure a reproducible reaction. Pure hCHS reacts isochemically with water, resulting in a C-S-H phase with the same chemical composition as a single hydration product, with a homogeneous distribution of the main elements Ca and Si throughout the sample. Here we study via nanoindentation the mechanical properties of two different types of hardened pastes made out of Celitement (C/S=1.28), with varying amounts of hCHS and variable water to cement ratio. We couple nanoindentation grids with Raman mappings to link the nanoscale mechanical properties to individual microstructural components, yielding in-depth insight into the mechanics of the mineralogical phases constituting the hardened cement paste. We show that we can identify in hardened Celitement paste both fresh C-S-H with varying density, and C-S-H from the raw material using their specific Raman spectra, while simultaneously measuring their mechanical properties. Albeit not suitable for phase identification, EDX measurements provide valuable information about the distribution of alkalis, thus further helping to understand the reaction pattern of hCHS.
Whenever a quantum system undergoes a cycle governed by a slow change of parameters, it acquires a phase factor: the geometric phase. Its most common formulations are known as the Aharonov-Bohm, Pancharatnam and Berry phases, but both prior and later manifestations exist. Though traditionally attributed to the foundations of quantum mechanics, the geometric phase has been generalized and became increasingly influential in many areas from condensed-matter physics and optics to high energy and particle physics and from fluid mechanics to gravity and cosmology. Interestingly, the geometric phase also offers unique opportunities for quantum information and computation. In this Review we first introduce the Aharonov-Bohm effect as an important realization of the geometric phase. Then we discuss in detail the broader meaning, consequences and realizations of the geometric phase emphasizing the most important mathematical methods and experimental techniques used in the study of geometric phase, in particular those related to recent works in optics and condensed-matter physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا