No Arabic abstract
Helioscopes, such as the proposed International Axion Observatory (IAXO), have significant discovery potential for axions and axion-like particles. In this note, we argue that beyond discovery they can resolve details of the model. In particular, in the region suggested by stellar cooling anomalies, there is a good chance to measure the mass of the particle and separately its couplings to electrons and photons. This can give crucial information on the nature of the underlying model. To achieve this, energy resolved detectors and a setup with low energy threshold are needed.
The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10$^{12}$ GeV$^{-1}$, i.e. 1 - 1.5 orders of magnitude beyond the one currently achieved by CAST. The project relies on improvements in magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to solve the white dwarfs anomaly, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics. This contribution is a summary of our paper [1] to which we refer for further details.
We review the physics potential of a next generation search for solar axions: the International Axion Observatory (IAXO). Endowed with a sensitivity to discover axion-like particles (ALPs) with a coupling to photons as small as $g_{agamma}sim 10^{-12}$ GeV$^{-1}$, or to electrons $g_{ae}sim$10$^{-13}$, IAXO has the potential to find the QCD axion in the 1 meV$sim$1 eV mass range where it solves the strong CP problem, can account for the cold dark matter of the Universe and be responsible for the anomalous cooling observed in a number of stellar systems. At the same time, IAXO will have enough sensitivity to detect lower mass axions invoked to explain: 1) the origin of the anomalous transparency of the Universe to gamma-rays, 2) the observed soft X-ray excess from galaxy clusters or 3) some inflationary models. In addition, we review string theory axions with parameters accessible by IAXO and discuss their potential role in cosmology as Dark Matter and Dark Radiation as well as their connections to the above mentioned conundrums.
The International Axion Observatory (IAXO) is a next generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10^{-12} GeV^{-1}, i.e. 1-1.5 orders of magnitude beyond sensitivities achieved by the currently most sensitive axion helioscope, the CERN Axion Solar Telescope (CAST). Crucial factors in improving the sensitivity for IAXO are the increase of the magnetic field volume together with the extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested at CAST. Electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) along with other novel excitations at the low-energy frontier of elementary particle physics could provide additional physics motivation for IAXO.
A number of observations of stellar systems show a mild preference for anomalously fast cooling compared with what predicted in the standard theory, which leads to a speculation that there exists an additional energy loss mechanism originated from the emission of axions in stars. We revisit the global analysis of the stellar cooling anomalies by adopting conservative assessments on several systematic uncertainties and find that the significance of the cooling hints becomes weaker but still indicates a non-vanishing axion-electron coupling at around 2.4$,sigma$. With the revised analysis results, we explore the possibility that such excessive energy losses are interpreted in the framework of variant axion models, which require two Higgs doublets and flavor-dependent Peccei-Quinn charge assignments. These models resolve two fundamental issues faced in the traditional KSVZ/DFSZ models by predicting a sizable axion coupling to electrons required to explain the cooling anomalies and at the same time providing a solution to the cosmological domain wall problem. We also find that a specific structure of the axion couplings to electrons and nucleons slightly relaxes the constraint from supernova 1987A and enlarges viable parameter regions compared with the DFSZ models. It is shown that good global fits to the observational data are obtained for axion mass ranges of $0.45,mathrm{meV} lesssim m_a lesssim 30,mathrm{meV}$, and that the predicted parameter regions can be probed in the forthcoming helioscope searches.
We study the formation and evolution of topological defects in an aligned axion model with multiple Peccei-Quinn scalars, where the QCD axion is realized by a certain combination of the axions with decay constants much smaller than the conventional Peccei-Quinn breaking scale. When the underlying U(1) symmetries are spontaneously broken, the aligned structure in the axion field space exhibits itself as a complicated string-wall network in the real space. We find that the string-wall network likely survives until the QCD phase transition if the number of the Peccei-Quinn scalars is greater than two. The string-wall system collapses during the QCD phase transition, producing a significant amount of gravitational waves in the nano-Hz range at present. The typical decay constant is constrained to be below O(100) TeV by the pulsar timing observations, and the constraint will be improved by a factor of 2 in the future SKA observations.