No Arabic abstract
We investigate the development of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disk around a spinning central black hole. We solve the equations of general relativity that govern small amplitude oscillations of a discontinuous interface in a Keplerian disk threaded by an ordered magnetic field, and we derive a stability criterion that depends on the central black hole spin and the accumulated magnetic field. We also compare our results with the results of GR MHD simulations of black hole accretion flows that reach a magnetically arrested state (MAD). We found that the instability growth timescales that correspond to the simulation parameters are comparable to the corresponding timescales for free-fall accretion from the ISCO onto the black hole. We thus propose that the Rayleigh-Taylor instability disrupts the accumulation of magnetic flux onto the black hole horizon as the disk reaches a MAD state.
The dynamics of a thin liquid film on the underside of a curved cylindrical substrate is studied. The evolution of the liquid layer is investigated as the film thickness and the radius of curvature of the substrate are varied. A dimensionless parameter (a modified Bond number) that incorporates both geometric parameters, gravity, and surface tension is identified, and allows the observations to be classified according to three different flow regimes: stable films, films with transient growth of perturbations followed by decay, and unstable films. Experiments and theory confirm that, below a critical value of the Bond number, curvature of the substrate suppresses the Rayleigh-Taylor instability.
This work examines the effect of the embedded magnetic field strength on the non-linear development of the magnetic Rayleigh-Taylor Instability (RTI) (with a field-aligned interface) in an ideal gas close to the incompressible limit in three dimensions. Numerical experiments are conducted in a domain sufficiently large so as to allow the predicted critical modes to develop in a physically realistic manner. The ratio between gravity, which drives the instability in this case (as well as in several of the corresponding observations), and magnetic field strength is taken up to a ratio which accurately reflects that of observed astrophysical plasma, in order to allow comparison between the results of the simulations and the observational data which served as inspiration for this work. This study finds reduced non-linear growth of the rising bubbles of the RTI for stronger magnetic fields, and that this is directly due to the change in magnetic field strength, rather than the indirect effect of altering characteristic length scales with respect to domain size. By examining the growth of the falling spikes, the growth rate appears to be enhanced for the strongest magnetic field strengths, suggesting that rather than affecting the development of the system as a whole, increased magnetic field strengths in fact introduce an asymmetry to the system. Further investigation of this effect also revealed that the greater this asymmetry, the less efficiently the gravitational energy is released. By better understanding the under-studied regime of such a major phenomenon in astrophysics, deeper explanations for observations may be sought, and this work illustrates that the strength of magnetic fields in astrophysical plasmas influences observed RTI in subtle and complex ways.
With the advent of gravitational wave astronomy, searching for gravitational wave echoes from black holes (BHs) is becoming an interesting probe of their quantum nature near their horizons. Newborn BHs may be strong emitters of echoes, as they accompany large perturbations in the surrounding spacetime upon formation. Utilizing the Quantum Black Hole Seismology framework (Oshita et al. 2020), we study the expected echoes upon BH formation resulting from neutron star mergers and failed supernovae. For BH remnants from neutron star mergers, we evaluate the consistency of these models with the recent claim on the existence of echoes following the neutron star merger event GW170817. We find that the claimed echoes in GW170817, if real, suggest that overtones contribute a significant amount of energy in the ringdown of the remnant BH. We finally discuss the detectability of echoes from failed supernovae by second and third-generation gravitational wave detectors, and find that current (future) detectors constrain physical reflectivity models for events occurring within a few Mpc (a few x 10 Mpc). Detecting such echo signals may significantly constrain the maximum mass and equation of state of neutron stars.
In a recent paper (Phys. Dark Univ. {bf 31}, 100744 (2021)) it has been obtained new static black hole solutions with primary hairs by the Gravitational Decoupling. In this work we either study the geodesic motion of massive and massless particles around those solutions and restrict the values of the primary hairs by observational data. In particular, we obtain the effective potential, the innermost stable circular orbits, the marginally bounded orbit, and the periastron advance for time--like geodesics. In order to restrict the values taken by the primary hairs we explore their relationship with the rotation parameter of the Kerr black hole giving the same innermost stable circular orbit radius and give the numerical values for the supermassive black holes at Ark 564 and NGC 1365. The photon sphere and the impact parameter associated to null geodesics are also discussed.
Dirac cloud is in absence in general relativity since the superradiance mechanism fails to work for Dirac fields. For the first time we find a mechanism to support Dirac clouds in modified gravity. We study quasi bound states of Dirac particles around a charged spherical black hole in dilatonic gravity. We find that the quasi bound states become real bound states when the central black hole becomes extremal. We make an intensive study of the energy spectrum of the stationary clouds for different fine structure constant $mu M$, and reveal the existence condition of these clouds. Our result strongly implies that extreme dilatonic black holes behave as elementary particles.