On the eigenvalues of truncations of random unitary matrices


Abstract in English

We consider the empirical eigenvalue distribution of an $mtimes m$ principle submatrix of an $ntimes n$ random unitary matrix distributed according to Haar measure. Earlier work of Petz and Reffy identified the limiting spectral measure if $frac{m}{n}toalpha$, as $ntoinfty$; under suitable scaling, the family ${mu_alpha}_{alphain(0,1)}$ of limiting measures interpolates between uniform measure on the unit disc (for small $alpha$) and uniform measure on the unit circle (as $alphato1$). In this note, we prove an explicit concentration inequality which shows that for fixed $n$ and $m$, the bounded-Lipschitz distance between the empirical spectral measure and the corresponding $mu_alpha$ is typically of order $sqrt{frac{log(m)}{m}}$ or smaller. The approach is via the theory of two-dimensional Coulomb gases and makes use of a new Coulomb transport inequality due to Chafai, Hardy, and Maida.

Download