3D Aeronomy Modeling of Close-in Exoplanets


Abstract in English

We present a 3D fully selfconsistent multi-fluid hydrodynamic aeronomy model to study the structure of a hydrogen dominated expanding upper atmosphere around the hot Jupiter HD 209458b and the warm Neptune GJ 436b. In comparison to previous studies with 1D and 2D models, the present work finds such 3D features as zonal flows in upper atmosphere reaching up to 1 km/s, the tilting of the planetary outflow by Coriolis force by up to 45 degrees and its compression around equatorial plane by tidal forces. We also investigated in details the influence of Helium (He) on the structure of the thermosphere. It is found that by decrease of the barometric scale-height, the He presence in the atmosphere strongly affects the H2 dissociation front and the temperature maximum.

Download