No Arabic abstract
Quantum discord is a measure of non-classical correlations, which are excess correlations inherent in quantum states that cannot be accessed by classical measurements. For multipartite states, the classically accessible correlations can be defined by the mutual information of the multipartite measurement outcomes. In general the quantum discord of an arbitrary quantum state involves an optimisation of over the classical measurements which is hard to compute. In this paper, we examine the quantum discord in the experimentally relevant case when the quantum states are Gaussian and the measurements are restricted to Gaussian measurements. We perform the optimisation over the measurements to find the Gaussian discord of the bipartite EPR state and tripartite GHZ state in the presence of different types of noise: uncorrelated noise, multiplicative noise and correlated noise. We find that by adding uncorrelated noise and multiplicative noise, the quantum discord always decreases. However, correlated noise can either increase or decrease the quantum discord. We also find that for low noise, the optimal classical measurements are single quadrature measurements. As the noise increases, a dual quadrature measurement becomes optimal.
We cast the problem of illuminating an object in a noisy environment into a communication protocol. A probe is sent into the environment, and the presence or absence of the object constitutes a signal encoded on the probe. The probe is then measured to decode the signal. We calculate the Holevo information and bounds to the accessible information between the encoded and received signal with two different Gaussian probes---an Einstein-Podolsky-Rosen (EPR) state and a coherent state. We also evaluate the Gaussian discord consumed during the encoding process with the EPR probe. We find that the Holevo quantum advantage, defined as the difference between the Holevo information obtained from the EPR and coherent state probes, is approximately equal to the discord consumed. These quantities become exact in the typical illumination regime of low object reflectivity and low probe energy. Hence we show that discord is the resource responsible for the quantum advantage in Gaussian quantum illumination.
A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach unconditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in this quantum advantage. We show that, in this scenario, the quantum discord quantifies the advantage of the quantum protocol over the corresponding classical one for any classical-quantum state.
We address entanglement, coherence, and information protection in a system of four non-interacting qubits coupled with different classical environments, namely: common, bipartite, tripartite, and independent environments described by Ornstein-Uhlenbeck (ORU) noise. We show that quantum information preserved by the four qubit state is more dependent on the coherence than the entanglement using time-dependent entanglement witness, purity, and Shannon entropy. We find these two quantum phenomena directly interrelated and highly vulnerable in environments with ORU noise, resulting in the pure exponential decay of a considerable amount. The current Markovian dynamical map, as well as suppression of the fluctuating character of the environments are observed to be entirely attributable to the Gaussian nature of the noise. Furthermore, the increasing number of environments are witnessed to accelerate the amount of decay. Unlike other noises, the current noise parameters flexible range is readily exploitable, ensuring long enough preserved memory properties. The four-qubit GHZ state, besides having a large information storage potential, stands partially entangled and coherent in common environments for an indefinite duration. Thus, it appeared to be a more promising resource for functional quantum computing than bipartite and tripartite quantum systems. In addition, we derive computational values for each system-environment interaction, which will help quantum practitioners to optimize the related kind of classical environments.
We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and the reservoirs have zero photons. We investigate, in this six-partite quantum system, the transfer of quantum discord from the qubits to the cavities and reservoirs. We show that this transfer occurs also when the cavities are not entangled. Moreover, we discuss how quantum discord can be extracted from the cavities and transferred to distant systems by traveling leaking photons, using the input-output theory.
We present a universal Holevo-like upper bound on the locally accessible information for arbitrary multipartite ensembles. This bound allows us to analyze the indistinguishability of a set of orthogonal states under LOCC. We also derive the upper bound for the capacity of distributed dense coding with multipartite senders and multipartite receivers.