Do you want to publish a course? Click here

Erratum: On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems [Comm. Pure Appl. Anal. 15 (2016), 299-317]

66   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this note, we want to highlight and correct an error in the paper On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems [Comm. Pure Appl. Anal. 15 (2016), 299-317] written by the authors.



rate research

Read More

The phase separation of an isothermal incompressible binary fluid in a porous medium can be described by the so-called Brinkman equation coupled with a convective Cahn-Hilliard (CH) equation. The former governs the average fluid velocity $mathbf{u}$, while the latter rules evolution of $varphi$, the difference of the (relative) concentrations of the two phases. The two equations are known as the Cahn-Hilliard-Brinkman (CHB) system. In particular, the Brinkman equation is a Stokes-like equation with a forcing term (Korteweg force) which is proportional to $mu ablavarphi$, where $mu$ is the chemical potential. When the viscosity vanishes, then the system becomes the Cahn-Hilliard-Hele-Shaw (CHHS) system. Both systems have been studied from the theoretical and the numerical viewpoints. However, theoretical results on the CHHS system are still rather incomplete. For instance, uniqueness of weak solutions is unknown even in 2D. Here we replace the usual CH equation with its physically more relevant nonlocal version. This choice allows us to prove more about the corresponding nonlocal CHHS system. More precisely, we first study well-posedness for the CHB system, endowed with no-slip and no-flux boundary conditions. Then, existence of a weak solution to the CHHS system is obtained as a limit of solutions to the CHB system. Stronger assumptions on the initial datum allow us to prove uniqueness for the CHHS system. Further regularity properties are obtained by assuming additional, though reasonable, assumptions on the interaction kernel. By exploiting these properties, we provide an estimate for the difference between the solution to the CHB system and the one to the CHHS system with respect to viscosity.
We study a Cahn-Hilliard-Hele-Shaw (or Cahn-Hilliard-Darcy) system for an incompressible mixture of two fluids. The relative concentration difference $varphi$ is governed by a convective nonlocal Cahn-Hilliard equation with degenerate mobility and logarithmic potential. The volume averaged fluid velocity $mathbf{u}$ obeys a Darcys law depending on the so-called Korteweg force $mu abla varphi$, where $mu$ is the nonlocal chemical potential. In addition, the kinematic viscosity $eta$ may depend on $varphi$. We establish first the existence of a global weak solution which satisfies the energy identity. Then we prove the existence of a strong solution. Further regularity results on the pressure and on $mathbf{u}$ are also obtained. Weak-strong uniqueness is demonstrated in the two dimensional case. In the three-dimensional case, uniqueness of weak solutions holds if $eta$ is constant. Otherwise, weak-strong uniqueness is shown by assuming that the pressure of the strong solution is $alpha$-H{o}lder continuous in space for $alphain (1/5,1)$.
We consider a diffuse interface model for phase separation of an isothermal incompressible binary fluid in a Brinkman porous medium. The coupled system consists of a convective Cahn-Hilliard equation for the phase field $phi$, i.e., the difference of the (relative) concentrations of the two phases, coupled with a modified Darcy equation proposed by H.C. Brinkman in 1947 for the fluid velocity $mathbf{u}$. This equation incorporates a diffuse interface surface force proportional to $phi abla mu$, where $mu$ is the so-called chemical potential. We analyze the well-posedness of the resulting Cahn-Hilliard-Brinkman (CHB) system for $(phi,mathbf{u})$. Then we establish the existence of a global attractor and the convergence of a given (weak) solution to a single equilibrium via {L}ojasiewicz-Simon inequality. Furthermore, we study the behavior of the solutions as the viscosity goes to zero, that is, when the CHB system approaches the Cahn-Hilliard-Hele-Shaw (CHHS) system. We first prove the existence of a weak solution to the CHHS system as limit of CHB solutions. Then, in dimension two, we estimate the difference of the solutions to CHB and CHHS systems in terms of the viscosity constant appearing in CHB.
We consider a diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids. This model consists of the Navier-Stokes equations coupled with a convective nonlocal Cahn-Hilliard equation. Several results were already proven by two of the present authors. However, in the two-dimensional case, the uniqueness of weak solutions was still open. Here we establish such a result even in the case of degenerate mobility and singular potential. Moreover, we show the strong-weak uniqueness in the case of viscosity depending on the order parameter, provided that either the mobility is constant and the potential is regular or the mobility is degenerate and the potential is singular. In the case of constant viscosity, on account of the uniqueness results we can deduce the connectedness of the global attractor whose existence was obtained in a previous paper. The uniqueness technique can be adapted to show the validity of a smoothing property for the difference of two trajectories which is crucial to establish the existence of an exponential attractor. The latter is established even in the case of variable viscosity, constant mobility and regular potential.
Here we consider the nonlocal Cahn-Hilliard equation with constant mobility in a bounded domain. We prove that the associated dynamical system has an exponential attractor, provided that the potential is regular. In order to do that a crucial step is showing the eventual boundedness of the order parameter uniformly with respect to the initial datum. This is obtained through an Alikakos-Moser type argument. We establish a similar result for the viscous nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In this case the validity of the so-called separation property is crucial. We also discuss the convergence of a solution to a single stationary state. The separation property in the nonviscous case is known to hold when the mobility degenerates at the pure phases in a proper way and the potential is of logarithmic type. Thus, the existence of an exponential attractor can be proven in this case as well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا