No Arabic abstract
For finite dimensional hermitean inner product spaces $V$, over $*$-fields $F$, and in the presence of orthogonal bases providing form elements in the prime subfield of $F$, we show that quantifier free definable relations in the subspace lattice $L(V)$ with involution by taking orthogonals, admit quantifier free descriptions within $F$, also in terms of Grassmann-Plucker coordinates.In the latter setting, homogeneous descriptions are obtained if one allows quantification type $Sigma_1$. In absence of involution, these results remain valid.
Work of Eagle, Farah, Goldbring, Kirchberg, and Vignati shows that the only separable C*-algebras that admit quantifier elimination in continuous logic are $mathbb{C},$ $mathbb{C}^2,$ $M_2(mathbb{C}),$ and the continuous functions on the Cantor set. We show that, among finite dimensional C*-algebras, quantifier elimination does hold if the language is expanded to include two new predicate symbols: One for minimal projections, and one for pairs of unitarily conjugate projections. Both of these predicates are definable, but not quantifier-free definable, in the usual language of C*-algebras. We also show that adding just the predicate for minimal projections is sufficient in the case of full matrix algebras, but that in general both new predicate symbols are required.
We prove that the theory of the $p$-adics ${mathbb Q}_p$ admits elimination of imaginaries provided we add a sort for ${rm GL}_n({mathbb Q}_p)/{rm GL}_n({mathbb Z}_p)$ for each $n$. We also prove that the elimination of imaginaries is uniform in $p$. Using $p$-adic and motivic integration, we deduce the uniform rationality of certain formal zeta functions arising from definable equivalence relations. This also yields analogous results for definable equivalence relations over local fields of positive characteristic. The appendix contains an alternative proof, using cell decomposition, of the rationality (for fixed $p$) of these formal zeta functions that extends to the subanalytic context. As an application, we prove rationality and uniformity results for zeta functions obtained by counting twist isomorphism classes of irreducible representations of finitely generated nilpotent groups; these are analogous to similar results of Grunewald, Segal and Smith and of du Sautoy and Grunewald for subgroup zeta functions of finitely generated nilpotent groups.
The only C*-algebras that admit elimination of quantifiers in continuous logic are $mathbb{C}, mathbb{C}^2$, $C($Cantor space$)$ and $M_2(mathbb{C})$. We also prove that the theory of C*-algebras does not have model companion and show that the theory of $M_n(mathcal {O_{n+1}})$ is not $forallexists$-axiomatizable for any $ngeq 2$.
We continue the study of a class of topological $mathcal{L}$-fields endowed with a generic derivation $delta$, focussing on describing definable groups. We show that one can associate to an $mathcal{L}_{delta}$ definable group a type $mathcal{L}$-definable topological group. We use the group configuration tool in o-minimal structures as developed by K. Peterzil.
For a group $G$ definable in a first order structure $M$ we develop basic topological dynamics in the category of definable $G$-flows. In particular, we give a description of the universal definable $G$-ambit and of the semigroup operation on it. We find a natural epimorphism from the Ellis group of this flow to the definable Bohr compactification of $G$, that is to the quotient $G^*/{G^*}^{00}_M$ (where $G^*$ is the interpretation of $G$ in a monster model). More generally, we obtain these results locally, i.e. in the category of $Delta$-definable $G$-flows for any fixed set $Delta$ of formulas of an appropriate form. In particular, we define local connected components ${G^*}^{00}_{Delta,M}$ and ${G^*}^{000}_{Delta,M}$, and show that $G^*/{G^*}^{00}_{Delta,M}$ is the $Delta$-definable Bohr compactification of $G$. We also note that some deeper arguments from the topological dynamics in the category of externally definable $G$-flows can be adapted to the definable context, showing for example that our epimorphism from the Ellis group to the $Delta$-definable Bohr compactification factors naturally yielding a continuous epimorphism from the $Delta$-definable generalized Bohr compactification to the $Delta$-definable Bohr compactification of $G$. Finally, we propose to view certain topological-dynamic and model-theoretic invariants as Polish structures which leads to some observations and questions.