Do you want to publish a course? Click here

AGILE, Fermi, Swift, and GASP-WEBT multi-wavelength observations of the high-redshift blazar 4C $+$71.07 in outburst

68   0   0.0 ( 0 )
 Added by Stefano Vercellone
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The flat-spectrum radio quasar 4C $+$71.07 is a high-redshift ($z=2.172$), $gamma$-loud blazar whose optical emission is dominated by the thermal radiation from accretion disc. 4C $+$71.07 has been detected in outburst twice by the AGILE $gamma$-ray satellite during the period end of October - mid November 2015, when it reached a $gamma$-ray flux of the order of $F_{rm E>100,MeV} = (1.2 pm 0.3)times 10^{-6}$ photons cm$^{-2}$ s$^{-1}$ and $F_{rm E>100,MeV} = (3.1 pm 0.6)times 10^{-6}$ photons cm$^{-2}$ s$^{-1}$, respectively, allowing us to investigate the properties of the jet and of the emission region. We investigated its spectral energy distribution by means of almost simultaneous observations covering the cm, mm, near-infrared, optical, ultra-violet, X-ray and $gamma$-ray energy bands obtained by the GASP-WEBT Consortium, the Swift and the AGILE and Fermi satellites. The spectral energy distribution of the second $gamma$-ray flare (the one whose energy coverage is more dense) can be modelled by means of a one-zone leptonic model, yielding a total jet power of about $4times10^{47}$ erg s$^{-1}$. During the most prominent $gamma$-ray flaring period our model is consistent with a dissipation region within the broad-line region. Moreover, this class of high-redshift, large-mass black-hole flat-spectrum radio quasars might be good targets for future $gamma$-ray satellites such as e-ASTROGAM.



rate research

Read More

Since the launch of the Fermi satellite, BL Lacertae has been moderately active at gamma-rays and optical frequencies until May 2011, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily gamma-ray observations by Fermi. Discrete correlation analysis between the optical and gamma-ray emission reveals correlation with a time lag of 0 +- 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time scales than corresponding gamma-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and gamma-ray-emitting zone in the jet. The mean optical degree of polarisation slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarisation angle (EVPA) shows a preferred orientation of about 15 deg, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011-2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarisation. A helical magnetic field model predicts an evolution of the mean polarisation that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model.
After several years of quiescence, the blazar CTA 102 underwent an exceptional outburst in 2012 September-October. The flare was tracked from gamma-ray to near-infrared frequencies, including Fermi and Swift data as well as photometric and polarimetric data from several observatories. An intensive GASP-WEBT collaboration campaign in optical and NIR bands, with an addition of previously unpublished archival data and extension through fall 2015, allows comparison of this outburst with the previous activity period of this blazar in 2004-2005. We find remarkable similarity between the optical and gamma-ray behaviour of CTA 102 during the outburst, with a time lag between the two light curves of ~1 hour, indicative of co-spatiality of the optical and gamma-ray emission regions. The relation between the gamma-ray and optical fluxes is consistent with the SSC mechanism, with a quadratic dependence of the SSC gamma-ray flux on the synchrotron optical flux evident in the post-outburst stage. However, the gamma-ray/optical relationship is linear during the outburst; we attribute this to changes in the Doppler factor. A strong harder-when-brighter spectral dependence is seen both the in gamma-ray and optical non-thermal emission. This hardening can be explained by convexity of the UV-NIR spectrum that moves to higher frequencies owing to an increased Doppler shift as the viewing angle decreases during the outburst stage. The overall pattern of Stokes parameter variations agrees with a model of a radiating blob or shock wave that moves along a helical path down the jet.
The object 4C 71.07 is a high-redshift blazar whose spectral energy distribution shows a prominent big blue bump and a strong Compton dominance. We present the results of a two-year multiwavelength campaign led by the Whole Earth Blazar Telescope (WEBT) to study both the quasar core and the beamed jet of this source. The WEBT data are complemented by ultraviolet and X-ray data from Swift, and by gamma-ray data by Fermi. The big blue bump is modelled by using optical and near-infrared mean spectra obtained during the campaign, together with optical and ultraviolet quasar templates. We give prescriptions to correct the source photometry in the various bands for the thermal contribution, in order to derive the non-thermal jet flux. The role of the intergalactic medium absorption is analysed in both the ultraviolet and X-ray bands. We provide opacity values to deabsorb ultraviolet data, and derive a best-guess value for the hydrogen column density through the analysis of X-ray spectra. We estimate the disc and jet bolometric luminosities, accretion rate, and black hole mass. Light curves do not show persistent correlations among flux changes at different frequencies. We study the polarimetric behaviour and find no correlation between polarisation degree and flux, even when correcting for the dilution effect of the big blue bump. Similarly, wide rotations of the electric vector polarisation angle do not seem to be connected with the source activity.
Blazar flares seen by the Fermi Gamma-Ray Space Telescope Large Area Telescope (Fermi LAT) are often followed up by Target of Opportunity (ToO) requests to the Neil Gehrels Swift Observatory (Swift). Using flares identified in the daily light curves of Fermi LAT Monitored Sources, we investigated which follow-up Swift ToO requests resulted in refereed publications. The goal was to create criteria of what Swift should look for in following up a Fermi-LAT gamma-ray flare. Parameters tested were peak gamma-ray flux, flare duration (based on a Bayesian Block analysis), type of AGN (BL Lac or FSRQ), and pattern of activity (single flare or extensive activity). We found that historically active sources and high-photon-flux sources result in more publications, deeming these successful Swift ToOs, while flare duration and type of AGN had little or no impact on whether or not a ToO led to a publication.
We report the detection by the AGILE satellite of a rapid gamma-ray flare from the powerful gamma-ray quasar PKS 1510-089, during a pointing centered on the Galactic Center region from 1 March to 30 March 2008. This source has been continuosly monitored in the radio-to-optical bands by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT). Moreover, the gamma-ray flaring episode triggered three ToO observations by the Swift satellite in three consecutive days, starting from 20 March 2008. In the period 1-16 March 2008, AGILE detected gamma-ray emission from PKS 1510-089 at a significance level of 6.2-sigma with an average flux over the entire period of (84 +/- 17) x 10^{-8} photons cm^{-2} s^{-1} for photon energies above 100 MeV. After a predefined satellite re-pointing, between 17 and 21 March 2008, AGILE detected the source at a significance level of 7.3-sigma, with an average flux (E > 100 MeV) of (134 +/- 29) x 10^{-8} photons cm^{-2} s^{-1} and a peak level of (281 +/- 68) x 10^{-8} photons cm^{-2} s^{-1} with daily integration. During the observing period January-April 2008, the source also showed an intense and variable optical activity, with several flaring episodes and a significant increase of the flux was observed at millimetric frequencies. Moreover, in the X-ray band the Swift/XRT observations seem to show an harder-when-brighter behaviour of the source spectrum. The spectral energy distribution of mid-March 2008 is modelled with a homogeneous one-zone synchrotron self Compton emission plus contributions from inverse Compton scattering of external photons from both the accretion disc and the broad line region. Indeed, some features in the optical-UV spectrum seem to indicate the presence of Seyfert-like components, such as the little blue bump and the big blue bump.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا