Do you want to publish a course? Click here

Nucleon form factors and root-mean-square radii on a (10.8 fm$)^4$ lattice at the physical point

64   0   0.0 ( 0 )
 Added by Eigo Shintani
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We present the nucleon form factors and root-mean-square (RMS) radii measured on a (10.8 fm$)^4$ lattice at the physical point. We compute the form factors at small momentum transfer region in $q^2le 0.102$ GeV$^2$ with the standard plateau method choosing four source-sink separation times $t_{rm sep}$ from 0.84 to 1.35 fm to examine the possible excited state contamination. We obtain the electric and magnetic form factors and their RMS radii for not only the isovector channel but also the proton and neutron ones without the disconnected diagram. We also obtain the axial-vector coupling and the axial radius from the axial-vector form factor. We find that these three form factors do not show large $t_{rm sep}$ dependence in our lattice setup. On the other hand, the induced pseudoscalar and pseudoscalar form factors show the clear effects of the excited state contamination, which affect the generalized Goldberger-Treiman relation.



rate research

Read More

115 - C. Alexandrou 2020
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the strange and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain final results, while the other two are used for assessing volume effects. The pseudoscalar form factor is also computed using these ensembles. We examine the momentum dependence of these form factors as well as relations based on pion pole dominance and the partially conserved axial-vector current hypothesis.
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2$%$ of the connected contribution and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z-expansion we extract the nucleon electric and magnetic radii, as well as, the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
107 - C. Alexandrou 2006
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a lowest pion mass of about 400 MeV. In the full theory we use a lattice of spatial size 1.9 fm at beta=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. We compare our lattice results to the isovector part of the experimentally measured form factors.
242 - C. Alexandrou 2010
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
We present the calculation of the $K_{l3}$ form factors with $N_f = 2 + 1$ nonperturbatively $O(a)$-improved Wilson quark action and Iwasaki gauge action at the physical point on a large volume of (10.9 fm)$^3$ at one lattice spacing of $a = 0.085$ fm. We extract the form factors from 3-point functions with three different time separations between the source and sink operators to confirm suppression of excited state contributions. The form factors are calculated in very close to the zero momentum transfer, $q^2 = 0$, thanks to the large volume, so that stable interpolations to $q^2 = 0$ are carried out. Using our form factors, we obtain the form factor at $q^2 = 0$, $f_+(0) = 0.9603(16)(^{+14}_{ -4})(44)(19)(1)$, where the first, second, and fifth errors are statistical, systematic errors from fit functions and the isospin breaking effect, respectively. The third and fourth errors denote the finite lattice spacing effects estimated from the renormalization factor and contribution beyond the leading order SU(3) chiral perturbation theory (ChPT). The result of $f_+(0)$ yields the Cabibbo-Kobayashi-Maskawa (CKM) matrix element, $|V_{us}| = 0.2255(13)(4)$, where the first error comes from our calculation and the second from the experiment. This value is consistent with the ones determined from the unitarity of the CKM matrix and the $K_{l2}$ decay within one standard deviation, while it is slightly larger than recent lattice calculations by at most 1.5 $sigma$. Furthermore, we evaluate the shape of the form factors and the phase space integral from our results. We confirm that those results are consistent with the experiment, and also $|V_{us}|$ determined with our phase space integral agrees with the one in the above.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا