Do you want to publish a course? Click here

The Relation Between Galaxy ISM and Circumgalactic OVI Gas Kinematics Derived from Observations and $Lambda$CDM Simulations

209   0   0.0 ( 0 )
 Added by Glenn Kacprzak
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first galaxy-OVI absorption kinematic study for 20 absorption systems (EW>0.1~{AA}) associated with isolated galaxies (0.15$<z<$0.55) that have accurate redshifts and rotation curves obtained using Keck/ESI. Our sample is split into two azimuthal angle bins: major axis ($Phi<25^{circ}$) and minor axis ($Phi>33^{circ}$). OVI absorption along the galaxy major axis is not correlated with galaxy rotation kinematics, with only 1/10 systems that could be explained with rotation/accretion models. This is in contrast to co-rotation commonly observed for MgII absorption. OVI along the minor axis could be modeled by accelerating outflows but only for small opening angles, while the majority of the OVI is decelerating. Along both axes, stacked OVI profiles reside at the galaxy systemic velocity with the absorption kinematics spanning the entire dynamical range of their galaxies. The OVI found in AMR cosmological simulations exists within filaments and in halos of ~50 kpc surrounding galaxies. Simulations show that major axis OVI gas inflows along filaments and decelerates as it approaches the galaxy while increasing in its level of co-rotation. Minor axis outflows in the simulations are effective within 50-75 kpc beyond that they decelerate and fall back onto the galaxy. Although the simulations show clear OVI kinematic signatures they are not directly comparable to observations. When we compare kinematic signatures integrated through the entire simulated galaxy halo we find that these signatures are washed out due to full velocity distribution of OVI throughout the halo. We conclude that OVI alone does not serve as a useful kinematic indicator of gas accretion, outflows or star-formation and likely best probes the halo virial temperature.



rate research

Read More

155 - G. G. Kacprzak 2009
We obtained ESI/Keck rotation curves of 10 MgII absorption selected galaxies (0.3 < z < 1.0) for which we have WFPC-2/HST images and high resolution HIRES/Keck and UVES/VLT quasar spectra of the MgII absorption profiles. We perform a kinematic comparison of these galaxies and their associated halo MgII absorption. For all 10 galaxies, the majority of the absorption velocities lie in the range of the observed galaxy rotation velocities. In 7/10 cases, the absorption velocities reside fully to one side of the galaxy systemic velocity and usually align with one arm of the rotation curve. In all cases, a constant rotating thick-disk model poorly reproduces the full spread of observed MgII absorption velocities when reasonably realistic parameters are employed. In 2/10 cases, the galaxy kinematics, star formation surface densities, and absorption kinematics have a resemblance to those of high redshift galaxies showing strong outflows. We find that MgII absorption velocity spread and optical depth distribution may be dependent on galaxy inclination. To further aid in the spatial-kinematic relationships of the data, we apply quasar absorption line techniques to a galaxy (v_c=180 km/s) embedded in LCDM simulations. In the simulations, MgII absorption selects metal enriched halo gas out to roughly 100 kpc from the galaxy, tidal streams, filaments, and small satellite galaxies. Within the limitations inherent in the simulations, the majority of the simulated MgII absorption arises in the filaments and tidal streams and is infalling towards the galaxy with velocities between -200 < v_r < -180 km/s. The MgII absorption velocity offset distribution (relative to the simulated galaxy) spans ~200 km/s with the lowest frequency of detecting MgII at the galaxy systematic velocity.
The pattern speed with which galactic bars rotate is intimately linked to the amount of dark matter in the inner regions of their host galaxies. In particular, dark matter haloes act to slow down bars via torques exerted through dynamical friction. Observational studies of barred galaxies tend to find that bars rotate fast, while hydrodynamical cosmological simulations of galaxy formation and evolution in the $Lambda$CDM framework have previously found that bars slow down excessively. This has led to a growing tension between fast bars and the $Lambda$CDM cosmological paradigm. In this study we revisit this issue, using the Auriga suite of high resolution, magneto-hydrodynamical cosmological zoom-in simulations of galaxy formation and evolution in the $Lambda$CDM framework, finding that bars remain fast down to $z=0$. In Auriga, bars form in galaxies that have higher stellar-to-dark matter ratios and are more baryon-dominated than in previous cosmological simulations; this suggests that in order for bars to remain fast, massive spiral galaxies must lie above the commonly used abundance matching relation. While this reduces the aforementioned tension between the rotation speed of bars and $Lambda$CDM, it accentuates the recently reported discrepancy between the dynamically inferred stellar-to-dark matter ratios of massive spirals and those inferred from abundance matching. Our results highlight the potential of using bar dynamics to constrain models of galaxy formation and evolution.
We present CO(J= 1-0; 3-2; 5-4; 10-9) and 1.2-kpc resolution [CII] line observations of the dusty star-forming galaxy (SFG) HXMM05 -- carried out with the Karl G. Jansky Very Large Array, the Combined Array for Research in Millimeter-wave Astronomy, the Plateau de Bure Interferometer, and the Atacama Large Millimeter/submillimeter Array, measuring an unambiguous redshift of z = 2.9850+/-0.0009. We find that HXMM05 is a hyper-luminous infrared galaxy (LIR=(4+/-1)x10^13 Lsun) with a total molecular gas mass of (2.1+/-0.7)x10^11 (alpha_CO/0.8) Msun. The CO(J=1-0) and [CII] emission are extended over ~9 kpc in diameter, and the CO line FWHM exceeds 1100 km s^-1. The [CII] emission shows a monotonic velocity gradient consistent with a disk, with a maximum rotation velocity of v_c = 616+/-100 km s^-1 and a dynamical mass of (7.7+/-3.1)x10^11 Msun. We find a star formation rate (SFR) of 2900^750_-595 Msun yr^-1. HXMM05 is thus among the most intensely star-forming galaxies known at high redshift. Photo-dissociation region modeling suggests physical conditions similar to nearby SFGs, showing extended star formation, which is consistent with our finding that the gas and dust emission are co-spatial. Its molecular gas excitation resembles the local major merger Arp 220. The broad CO and [CII] lines and a pair of compact dust nuclei suggest the presence of a late-stage major merger at the center of the extended disk, again reminiscent of Arp 220. The observed gas kinematics and conditions together with the presence of a companion and the pair of nuclei suggest that HXMM05 is experiencing multiple mergers as a part of the evolution.
219 - Aseem Paranjape 2021
We study the radial acceleration relation (RAR) between the total ($a_{rm tot}$) and baryonic ($a_{rm bary}$) centripetal acceleration profiles of central galaxies in the cold dark matter (CDM) paradigm. We analytically show that the RAR is intimately connected with the physics of the quasi-adiabatic relaxation of dark matter in the presence of baryons in deep potential wells. This cleanly demonstrates how the mean RAR and its scatter emerge in the low-acceleration regime ($10^{-12},{rm m,s}^{-2}lesssim a_{rm bary}lesssim10^{-10},{rm m,s}^{-2}$) from an interplay between baryonic feedback processes and the distribution of CDM in dark halos. Our framework allows us to go further and study both higher and lower accelerations in detail, using analytical approximations and a realistic mock catalog of $sim342,000$ low-redshift central galaxies with $M_rleq-19$. We show that, while the RAR in the baryon-dominated, high-acceleration regime ($a_{rm bary}gtrsim10^{-10},{rm m,s}^{-2}$) is very sensitive to details of the relaxation physics, a simple `baryonification prescription matching the relaxation results of hydrodynamical CDM simulations is remarkably successful in reproducing the observed RAR without any tuning. And in the (currently unobserved) ultra-low-acceleration regime ($a_{rm bary}lesssim 10^{-12},{rm m,s}^{-2}$), the RAR is sensitive to the abundance of diffuse gas in the halo outskirts, with our default model predicting a distinctive break from a simple power-law-like relation for HI-deficient, diffuse gas-rich centrals. Our mocks also show that the RAR provides more robust, testable predictions of the $Lambda$CDM paradigm at galactic scales, with implications for alternative gravity theories, than the baryonic Tully-Fisher relation.
90 - William Cowley 2017
We present predictions for the outcome of deep galaxy surveys with the $James$ $Webb$ $Space$ $Telescope$ ($JWST$) obtained from a physical model of galaxy formation in $Lambda$CDM. We use the latest version of the GALFORM model, embedded within a new ($800$ Mpc)$^{3}$ dark matter only simulation with a halo mass resolution of $M_{rm halo}>2times10^{9}$ $h^{-1}$ M$_{odot}$. For computing full UV-to-mm galaxy spectral energy distributions, including the absorption and emission of radiation by dust, we use the spectrophotometric radiative transfer code GRASIL. The model is calibrated to reproduce a broad range of observational data at $zlesssim6$, and we show here that it can also predict evolution of the rest-frame far-UV luminosity function for $7lesssim zlesssim10$ which is in good agreement with observations. We make predictions for the evolution of the luminosity function from $z=16$ to $z=0$ in all broadband filters on the Near InfraRed Camera (NIRCam) and Mid InfraRed Instrument (MIRI) on $JWST$ and present the resulting galaxy number counts and redshift distributions. Our fiducial model predicts that $sim1$ galaxy per field of view will be observable at $zsim11$ for a $10^4$ s exposure with NIRCam. A variant model, which produces a higher redshift of reionization in better agreement with $Planck$ data, predicts number densities of observable galaxies $sim5times$ greater at this redshift. Similar observations with MIRI are predicted not to detect any galaxies at $zgtrsim6$. We also make predictions for the effect of different exposure times on the redshift distributions of galaxies observable with $JWST$, and for the angular sizes of galaxies in $JWST$ bands.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا