We study the effects of the position of the passive and active cavities on the spontaneous parity-time (PT) symmetry breaking behavior in non-Hermitian coupled cavities array model. We analyze and discuss the energy eigenvalue spectrums and PT symmetry in the topologically trivial and nontrivial regimes under three different cases in detail, i.e., the passive and active cavities are located at, respectively, the two end positions, the second and penultimate positions, and each position in coupled cavities array. The odevity of the number of cavities is further considered to check the effects of the non-Hermitian terms applied on the PT symmetric and asymmetric systems. We find that the position of the passive and active cavities has remarkable impacts on the spontaneous PT symmetry breaking behavior, and in each case the system exhibits distinguishable and novel spontaneous PT symmetry breaking characteristic, respectively. The effects of the non-Hermitian terms on the $mathcal{PT}$ symmetric and asymmetric systems due to the odevity are comparatively different in the first case while qualitatively same in the second case.