We demonstrate a new design principle for unidirectionally invisible non-Hermitian structures that are not only invisible for one specific wavelength but rather for a broad frequency range. Our idea is based on the concept of constant-intensity waves, which can propagate even through highly disordered media without back-scattering or intensity variations. Contrary to already existing invisibility studies, our new design principle requires neither a specific symmetry (like $mathcal{PT}$-symmetry) nor periodicity, and can thus be applied in a much wider context. This generality combined with broadband frequency stability allows a pulse to propagate through a disordered medium as if the medium was entirely uniform.