High order VEM on curved domains


Abstract in English

We deal with the virtual element method (VEM) for solving the Poisson equation on a domain $Omega$ with curved boundaries. Given a polygonal approximation $Omega_h$ of the domain $Omega$, the standard order $m$ VEM [6], for $m$ increasing, leads to a suboptimal convergence rate. We adapt the approach of [16] to VEM and we prove that an optimal convergence rate can be achieved by using a suitable correction depending on high order normal derivatives of the discrete solution at the boundary edges of $Omega_h$, which, to retain computability, is evaluated after applying the projector $Pi^ abla$ onto the space of polynomials. Numerical experiments confirm the theory.

Download