No Arabic abstract
Despite many decades of study, the kinematics of the broad-line region of 3C~273 are still poorly understood. We report a new, high signal-to-noise, reverberation mapping campaign carried out from November 2008 to March 2018 that allows the determination of time lags between emission lines and the variable continuum with high precision. The time lag of variations in H$beta$ relative to those of the 5100 Angstrom continuum is $146.8_{-12.1}^{+8.3}$ days in the rest frame, which agrees very well with the Paschen-$alpha$ region measured by the GRAVITY at The Very Large Telescope Interferometer. The time lag of the H$gamma$ emission line is found to be nearly the same as for H$beta$. The lag of the Fe II emission is $322.0_{-57.9}^{+55.5}$ days, longer by a factor of $sim$2 than that of the Balmer lines. The velocity-resolved lag measurements of the H$beta$ line show a complex structure which can be possibly explained by a rotation-dominated disk with some inflowing radial velocity in the H$beta$-emitting region. Taking the virial factor of $f_{rm BLR} = 1.3$, we derive a BH mass of $M_{bullet} = 4.1_{-0.4}^{+0.3} times 10^8 M_{odot}$ and an accretion rate of $9.3,L_{rm Edd},c^{-2}$ from the H$beta$ line. The decomposition of its $HST$ images yields a host stellar mass of $M_* = 10^{11.3 pm 0.7} M_odot$, and a ratio of $M_{bullet}/M_*approx 2.0times 10^{-3}$ in agreement with the Magorrian relation. In the near future, it is expected to compare the geometrically-thick BLR discovered by the GRAVITY in 3C 273 with its spatially-resolved torus in order to understand the potential connection between the BLR and the torus.
As one of the most interesting Seyfert 1 galaxies, PG 2130+099 has been the target of several reverberation mapping (RM) campaigns over the years. However, its measured broad H$beta$ line responses have been inconsistent, with time lags of $sim$200 days, $sim$25 days, and $sim$10 days being reported for different epochs while its optical luminosity changed no more than 40%. To investigate this issue, we conducted a new RM-campaign with homogenous and high cadence (about $sim$3 days) for two years during 2017--2019 to measure the kinematics and structure of the ionized gas. We successfully detected time lags of broad H$beta$, He II, He I, and Fe II lines with respect to the varying 5100AA continuum, revealing a stratified structure that is likely virialized with Keplerian kinematics in the first year of observations, but an inflow kinematics of the broad-line region from the second year. With a central black hole mass of $0.97_{-0.18}^{+0.15}times 10^7~M_{odot}$, PG 2130+099 has an accretion rate of $10^{2.1pm0.5}L_{rm Edd}c^{-2}$, where $L_{rm Edd}$ is the Eddington luminosity and $c$ is speed of light, implying that it is a super-Eddington accretor and likely possesses a slim, rather than thin, accretion disk. The fast changes of the ionization structures of the three broad lines remain puzzling.
We carried out photometric and spectroscopic observations of the well-studied broad-line radio galaxy 3C 120 with the Las Cumbres Observatory (LCO) global robotic telescope network from 2016 December to 2018 April as part of the LCO AGN Key Project on Reverberation Mapping of Accretion Flows. Here, we present both spectroscopic and photometric reverberation mapping results. We used the interpolated cross-correlation function (ICCF) to perform multiple-line lag measurements in 3C 120. We find the H$gamma$, He II $lambda 4686$, H$beta$ and He I $lambda 5876$ lags of $tau_{text{cen}} = 18.8_{-1.0}^{+1.3}$, $2.7_{-0.8}^{+0.7}$, $21.2_{-1.0}^{+1.6}$, and $16.9_{-1.1}^{+0.9}$ days respectively, relative to the V-band continuum. Using the measured lag and rms velocity width of the H$beta$ emission line, we determine the mass of the black hole for 3C 120 to be $M=left(6.3^{+0.5}_{-0.3}right)times10^7,(f/5.5)$ M$_odot$. Our black hole mass measurement is consistent with similar previous studies on 3C 120, but with small uncertainties. In addition, velocity-resolved lags in 3C 120 show a symmetric pattern across the H$beta$ line, 25 days at line centre decreasing to 17 days in the line wings at $pm4000$ km s$^{-1}$. We also investigate the inter-band continuum lags in 3C 120 and find that they are generally consistent with $tauproptolambda^{4/3}$ as predicted from a geometrically-thin, optically-thick accretion disc. From the continuum lags, we measure the best fit value $tau_{rm 0} = 3.5pm 0.2$ days at $lambda_{rm 0} = 5477$A. It implies a disc size a factor of $1.6$ times larger than prediction from the standard disc model with $L/L_{rm Edd} = 0.4$. This is consistent with previous studies in which larger than expected disc sizes were measured.
A detailed analysis of the data from a high sampling rate, multi-month reverberation mapping campaign, undertaken primarily at MDM Observatory with supporting observations from telescopes around the world, reveals that the Hbeta emission region within the broad line regions (BLRs) of several nearby AGNs exhibit a variety of kinematic behaviors. While the primary goal of this campaign was to obtain either new or improved Hbeta reverberation lag measurements for several relatively low luminosity AGNs (presented in a separate work), we were also able to unambiguously reconstruct velocity-resolved reverberation signals from a subset of our targets. Through high cadence spectroscopic monitoring of the optical continuum and broad Hbeta emission line variations observed in the nuclear regions of NGC 3227, NGC 3516, and NGC 5548, we clearly see evidence for outflowing, infalling, and virialized BLR gas motions, respectively.
We present inferences on the geometry and kinematics of the broad-Hbeta line-emitting region in four active galactic nuclei monitored as a part of the fall 2010 reverberation mapping campaign at MDM Observatory led by the Ohio State University. From modeling the continuum variability and response in emission-line profile changes as a function of time, we infer the geometry of the Hbeta- emitting broad line regions to be thick disks that are close to face-on to the observer with kinematics that are well-described by either elliptical orbits or inflowing gas. We measure the black hole mass to be log (MBH) = 7.25 (+/-0.10) for Mrk 335, 7.86 (+0.20, -0.17) for Mrk 1501, 7.84 (+0.14, -0.19) for 3C 120, and 6.92 (+0.24, -0.23) for PG 2130+099. These black hole mass measurements are not based on a particular assumed value of the virial scale factor f, allowing us to compute individual f factors for each target. Our results nearly double the number of targets that have been modeled in this manner, and investigate the properties of a more diverse sample by including previously modeled objects. We measure an average scale factor f in the entire sample to be log10(f) = 0.54 +/- 0.17 when the line dispersion is used to characterize the line width, which is consistent with values derived using the normalization of the MBH-sigma relation. We find that the scale factor f for individual targets is likely correlated with the black hole mass, inclination angle, and opening angle of the broad line region but we do not find any correlation with the luminosity.
We have modeled the full velocity-resolved reverberation response of the H$beta$ and He II optical broad emission lines in NGC 3783 to constrain the geometry and kinematics of the low-ionization and high-ionization broad line region. The geometry is found to be a thick disk that is nearly face on, inclined at $sim 18^{circ}$ to our line of sight, and exhibiting clear ionization stratification, with an extended H$beta$-emitting region ($r_{rm median}=10.07^{+1.10}_{-1.12}$ light days) and a more compact and centrally-located He II-emitting region ($r_{rm median}=1.33^{+0.34}_{-0.42}$ light days). In the H$beta$-emitting region, the kinematics are dominated by near-circular Keplerian orbits, but with $sim 40$% of the orbits inflowing. The more compact He II-emitting region, on the other hand, appears to be dominated by outflowing orbits. The black hole mass is constrained to be $M_{rm BH}=2.82^{+1.55}_{-0.63}times10^7$ $M_{odot}$, which is consistent with the simple reverberation constraint on the mass based on a mean time delay, line width, and scale factor of $langle f rangle=4.82$. The difference in kinematics between the H$beta$- and He II-emitting regions of the BLR is intriguing given the recent history of large changes in the ionizing luminosity of NGC 3783 and evidence for possible changes in the BLR structure as a result.