Do you want to publish a course? Click here

Radio Galaxy Zoo: Observational evidence for environment as the cause of radio source asymmetry

93   0   0.0 ( 0 )
 Added by Ross Turner
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the role of environment on radio galaxy properties by constructing a sample of large ($gtrsim100$~kpc), nearby ($z<0.3$) radio sources identified as part of the Radio Galaxy Zoo citizen science project. Our sample consists of 16 Fanaroff-Riley Type II (FR-II) sources, 6 FR-I sources, and one source with a hybrid morphology. FR-I sources appear to be hosted by more massive galaxies, consistent with previous studies. In the FR-II sample, we compare the degree of asymmetry in radio lobe properties to asymmetry in the radio source environment, quantified through optical galaxy clustering. We find that the length of radio lobes in FR-II sources is anti-correlated with both galaxy clustering and lobe luminosity. These results are in quantitative agreement with predictions from radio source dynamical models, and suggest that galaxy clustering provides a useful proxy for the ambient gas density distribution encountered by the radio lobes.



rate research

Read More

We consider the problem of determining the host galaxies of radio sources by cross-identification. This has traditionally been done manually, which will be intractable for wide-area radio surveys like the Evolutionary Map of the Universe (EMU). Automated cross-identification will be critical for these future surveys, and machine learning may provide the tools to develop such methods. We apply a standard approach from computer vision to cross-identification, introducing one possible way of automating this problem, and explore the pros and cons of this approach. We apply our method to the 1.4 GHz Australian Telescope Large Area Survey (ATLAS) observations of the Chandra Deep Field South (CDFS) and the ESO Large Area ISO Survey South 1 (ELAIS-S1) fields by cross-identifying them with the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We train our method with two sets of data: expert cross-identifications of CDFS from the initial ATLAS data release and crowdsourced cross-identifications of CDFS from Radio Galaxy Zoo. We found that a simple strategy of cross-identifying a radio component with the nearest galaxy performs comparably to our more complex methods, though our estimated best-case performance is near 100 per cent. ATLAS contains 87 complex radio sources that have been cross-identified by experts, so there are not enough complex examples to learn how to cross-identify them accurately. Much larger datasets are therefore required for training methods like ours. We also show that training our method on Radio Galaxy Zoo cross-identifications gives comparable results to training on expert cross-identifications, demonstrating the value of crowdsourced training data.
We present results from the first twelve months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170,000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses $1.4,$GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at $3.4,mu$m from the {it Wide-field Infrared Survey Explorer} (WISE) and at $3.6,mu$m from the {it Spitzer Space Telescope}. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is $>,75%$ consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects (QSOs), and luminous infrared radio galaxies (LIRGs). We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission, and hybrid morphology radio sources.
We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of $z=0.0897$ for the E0-type host galaxy, 2MASX J08231289+0333016, leading to M$_r = -22.6$ and a $1.4,$GHz radio luminosity density of $L_{rm 1.4} = 5.5times10^{24}$ W Hz$^{-1}$. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley (FR) classes I and II. The projected largest angular size of $approx8,$arcmin corresponds to $800,$kpc and the full length of the source along the curved jets/trails is $1.1,$Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301,at $1.2-2.6times10^{43}$ erg s$^{-1}$ for assumed intra-cluster medium temperatures of $1.0-5.0,$keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with $10^7,$yrs in between. This reinforces the idea that an association between RGZ J082312.9+033301, and the newly discovered poor cluster exists.
The upcoming next-generation large area radio continuum surveys can expect tens of millions of radio sources, rendering the traditional method for radio morphology classification through visual inspection unfeasible. We present ClaRAN - Classifying Radio sources Automatically with Neural networks - a proof-of-concept radio source morphology classifier based upon the Faster Region-based Convolutional Neutral Networks (Faster R-CNN) method. Specifically, we train and test ClaRAN on the FIRST and WISE images from the Radio Galaxy Zoo Data Release 1 catalogue. ClaRAN provides end users with automated identification of radio source morphology classifications from a simple input of a radio image and a counterpart infrared image of the same region. ClaRAN is the first open-source, end-to-end radio source morphology classifier that is capable of locating and associating discrete and extended components of radio sources in a fast (< 200 milliseconds per image) and accurate (>= 90 %) fashion. Future work will improve ClaRANs relatively lower success rates in dealing with multi-source fields and will enable ClaRAN to identify sources on much larger fields without loss in classification accuracy.
This paper demonstrates a novel and efficient unsupervised clustering method with the combination of a Self-Organising Map (SOM) and a convolutional autoencoder. The rapidly increasing volume of radio-astronomical data has increased demand for machine learning methods as solutions to classification and outlier detection. Major astronomical discoveries are unplanned and found in the unexpected, making unsupervised machine learning highly desirable by operating without assumptions and labelled training data. Our approach shows SOM training time is drastically reduced and high-level features can be clustered by training on auto-encoded feature vectors instead of raw images. Our results demonstrate this method is capable of accurately separating outliers on a SOM with neighbourhood similarity and K-means clustering of radio-astronomical features complexity. We present this method as a powerful new approach to data exploration by providing a detailed understanding of the morphology and relationships of Radio Galaxy Zoo (RGZ) dataset image features which can be applied to new radio survey data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا