Do you want to publish a course? Click here

Physics and geometry of knots-quivers correspondence

78   0   0.0 ( 0 )
 Added by Pietro Longhi
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The recently conjectured knots-quivers correspondence relates gauge theoretic invariants of a knot $K$ in the 3-sphere to representation theory of a quiver $Q_{K}$ associated to the knot. In this paper we provide geometric and physical contexts for this conjecture within the framework of the large $N$ duality of Ooguri and Vafa, that relates knot invariants to counts of holomorphic curves with boundary on $L_{K}$, the conormal Lagrangian of the knot in the resolved conifold, and corresponding M-theory considerations. From the physics side, we show that the quiver encodes a 3d ${mathcal N}=2$ theory $T[Q_{K}]$ whose low energy dynamics arises on the worldvolume of an M5 brane wrapping the knot conormal and we match the (K-theoretic) vortex partition function of this theory with the motivic generating series of $Q_{K}$. From the geometry side, we argue that the spectrum of (generalized) holomorphic curves on $L_{K}$ is generated by a finite set of basic disks. These disks correspond to the nodes of the quiver $Q_{K}$ and the linking of their boundaries to the quiver arrows. We extend this basic dictionary further and propose a detailed map between quiver data and topological and geometric properties of the basic disks that again leads to matching partition functions. We also study generalizations of A-polynomials associated to $Q_{K}$ and (doubly) refined version of LMOV invariants.



rate research

Read More

The relation between open topological strings and representation theory of symmetric quivers is explored beyond the original setting of the knot-quiver correspondence. Multiple cover generalizations of the skein relation for boundaries of holomorphic disks on a Lagrangian brane are observed to generate dual quiver descriptions of the geometry. Embedding into M-theory, a large class of dualities of 3d $mathcal{N}=2$ theories associated to quivers is obtained. The multi-cover skein relation admits a compact formulation in terms of quantum torus algebras associated to the quiver and in this language the relations are similar to wall-crossing identities of Kontsevich and Soibelman.
Cohomological invariants of twisted wild character varieties as constructed by Boalch and Yamakawa are derived from enumerative Calabi-Yau geometry and refined Chern-Simons invariants of torus knots. Generalizing the untwisted case, the present approach is based on a spectral correspondence for meromorphic Higgs bundles with fixed conjugacy classes at the marked points. This construction is carried out for twisted wild character varieties associated to (l, kl-1) torus knots, providing a colored generalization of existing results of Hausel, Mereb and Wong as well as Shende, Treumann and Zaslow.
Knot theory is actively studied both by physicists and mathematicians as it provides a connecting centerpiece for many physical and mathematical theories. One of the challenging problems in knot theory is distinguishing mutant knots. Mutant knots are not distinguished by colored HOMFLY-PT polynomials for knots colored by either symmetric and or antisymmetric representations of $SU(N)$. Some of the mutant knots can be distinguished by the simplest non-symmetric representation $[2,1]$. However there is a class of mutant knots which require more complex representations like $[4,2]$. In this paper we calculate polynomials and differences for the mutant knot polynomials in representations $[3,1]$ and $[4,2]$ and study their properties.
158 - Y. M. Cho , Seung Hun Oh , 2018
After Dirac introduced the monopole, topological objects have played increasingly important roles in physics. In this review we discuss the role of the knot, the most sophisticated topological object in physics, and related topological objects in various areas in physics. In particular, we discuss how the knots appear in Maxwells theory, Skyrme theory, and multi-component condensed matter physics.
We conjecture a relation between generalized quiver partition functions and generating functions for symmetrically colored HOMFLY-PT polynomials and corresponding HOMFLY-PT homology Poincare polynomials of a knot $K$. We interpret the generalized quiver nodes as certain basic holomorphic curves with boundary on the knot conormal $L_K$ in the resolved conifold, and the adjacency matrix as measuring their boundary linking. The simplest such curves are embedded disks with boundary in the primitive homology class of $L_K$, other basic holomorphic curves consists of two parts: an embedded punctured sphere and a multiply covered punctured disk with boundary in a multiple of the primitive homology class of $L_K$. We also study recursion relations for the partition functions connected to knot homologies. We show that, after a suitable change of variables, any (generalized) quiver partition function satisfies the recursion relation of a single toric brane in $mathbb{C}^3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا