We report the first measurement of the flux-integrated cross section of $ u_{mu}$ charged-current single $pi^{0}$ production on argon. This measurement is performed with the MicroBooNE detector, an 85 ton active mass liquid argon time projection chamber exposed to the Booster Neutrino Beam at Fermilab. This result on argon is compared to past measurements on lighter nuclei to investigate the scaling assumptions used in models of the production and transport of pions in neutrino-nucleus scattering. The techniques used are an important demonstration of the successful reconstruction and analysis of neutrino interactions producing electromagnetic final states using a liquid argon time projection chamber operating at the earths surface.
Production of K^{+} mesons in charged-current u_{mu} interactions on plastic scintillator (CH) is measured using MINERvA exposed to the low-energy NuMI beam at Fermilab. Timing information is used to isolate a sample of 885 charged-current events containing a stopping K^{+} which decays at rest. The differential cross section in K^{+} kinetic energy, dsigma/dT_{K}, is observed to be relatively flat between 0 and 500 MeV. Its shape is in good agreement with the prediction by the textsc{genie} neutrino event generator when final-state interactions are included, however the data rate is lower than the prediction by 15%.
The ArgoNeuT collaboration reports the first measurement of neutral current $pi^{0}$ production in $ u_{mu}$-argon and $bar{ u}_{mu}$-argon scattering. This measurement was performed using the ArgoNeuT liquid argon time projection chamber deployed at Fermilabs NuMI neutrino beam with an exposure corresponding to 1.2$times 10^{20}$ protons-on-target from the Fermilab Main Injector and a mean energy for $ u_{mu}$ of 9.6~GeV and for $bar{ u}_{mu}$ of 3.6~GeV. We compare the measured cross section and kinematic distributions to predictions from the GENIE and NuWro neutrino interaction event generators.
This paper reports the track multiplicity and kinematics of muons, charged pions, and protons from charged-current inclusive $bar{ u}_{mu}$ and $ u_{mu}$ interactions on a water target, measured using a nuclear emulsion detector in the NINJA experiment. A 3-kg water target was exposed to the T2K antineutrino-enhanced beam with a mean energy of 1.3 GeV. Owing to the high-granularity of the nuclear emulsion, protons with momenta down to 200 MeV/$c$ from the neutrino-water interactions were detected. We find good agreement between the observed data and model predictions for all kinematic distributions other than the number of charged pions. These results demonstrate the capability of measurements with nuclear emulsion to improve neutrino interaction models.
The semi-exclusive channel $ u_{mu}+textrm{CH}rightarrowmu^{-}pi^{0}+textrm{nucleon(s)}$ is analyzed using MINERvA exposed to the low-energy NuMI $ u_{mu}$ beam with spectral peak at $E_{ u} simeq 3$ GeV. Differential cross sections for muon momentum and production angle, $pi^{0}$ kinetic energy and production angle, and for squared four-momentum transfer are reported, and the cross section $sigma(E_{ u})$ is obtained over the range 1.5 GeV $leq E_{ u} <$ 20 GeV. Results are compared to GENIE and NuWro predictions and to published MINERvA cross sections for $ u_{mu}textrm{-CC}(pi^{+})$ and $bar{ u}_{mu}textrm{-CC}(pi^{0})$. Disagreements between data and simulation are observed at very low and relatively high values for muon angle and for $Q^2$ that may reflect shortfalls in modeling of interactions on carbon. For $pi^{0}$ kinematic distributions however, the data are consistent with the simulation and provide support for generator treatments of pion intranuclear scattering. Using signal-event subsamples that have reconstructed protons as well as $pi^{0}$ mesons, the $ppi^{0}$ invariant mass distribution is obtained, and the decay polar and azimuthal angle distributions in the rest frame of the $ppi^{0}$ system are measured in the region of $Delta(1232)^+$ production, $W < 1.4$ GeV.
We report a measurement of the flux-integrated $ u_{mu}$ charged-current cross sections on water, hydrocarbon, and iron in the T2K on-axis neutrino beam with a mean neutrino energy of 1.5 GeV. The measured cross sections on water, hydrocarbon, and iron are $sigma^{rm{H_{2}O}}_{rm{CC}}$ = (0.840$pm 0.010$(stat.)$^{+0.10}_{-0.08}$(syst.))$times$10$^{-38}$cm$^2$/nucleon, $sigma^{rm{CH}}_{rm{CC}}$ = (0.817$pm 0.007$(stat.)$^{+0.11}_{-0.08}$(syst.))$times$10$^{-38}$cm$^2$/nucleon, and $sigma^{rm{Fe}}_{rm{CC}}$ = (0.859$pm 0.003$(stat.) $^{+0.12}_{-0.10}$(syst.))$times$10$^{-38}$cm$^2$/nucleon respectively, for a restricted phase space of induced muons: $theta_{mu}<45^{circ}$ and $p_{mu}>$0.4 GeV/$c$ in the laboratory frame. The measured cross section ratios are ${sigma^{rm{H_{2}O}}_{rm{CC}}}/{sigma^{rm{CH}}_{rm{CC}}}$ = 1.028$pm 0.016$(stat.)$pm 0.053$(syst.), ${sigma^{rm{Fe}}_{rm{CC}}}/{sigma^{rm{H_{2}O}}_{rm{CC}}}$ = 1.023$pm 0.012$(stat.)$pm 0.058$(syst.), and ${sigma^{rm{Fe}}_{rm{CC}}}/{sigma^{rm{CH}}_{rm{CC}}}$ = 1.049$pm 0.010$(stat.)$pm 0.043$(syst.). These results, with an unprecedented precision for the measurements of neutrino cross sections on water in the studied energy region, show good agreement with the current neutrino interaction models used in the T2K oscillation analyses.
MicroBooNE collaboration: C. Adams
,M. Alrashed
,R. An
.
(2018)
.
"First Measurement of $ u_{mu}$ Charged-Current $pi^{0}$ Production on Argon with a LArTPC"
.
Joseph Zennamo
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا