Do you want to publish a course? Click here

Clarification of large-strength transitions in the beta decay of 11Be

88   0   0.0 ( 0 )
 Added by Jonas Refsgaard
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The shape and normalisation of the beta-delayed alpha spectrum from 11Be was measured by implanting 11Be ions in a segmented Si detector. The spectrum is found to be dominated by a well-known transition to the 3/2+ state at Ex = 9.87MeV in 11B. A significant increase in the observed decay strength towards the higher end of the Q window means, however, that the 9.87MeV state cannot alone be responsible for the transition. Using the R-matrix framework we find that the inclusion of an extra 3/2+ state at Ex = 11.49(10)MeV is required in order to obtain a satisfactory description of the spectrum. Both states show large widths towards alpha decay, exhausting significant fractions of the Wigner limit, a typical signature of alpha clusterisation. The observed Gamow-Teller strength indicate large overlaps between the two states and the ground state of 11Be.



rate research

Read More

We have observed beta-delayed proton emission from the neutron-rich nucleus 11Be by analysing a sample collected at the ISOLDE facility at CERN with accelerator mass spectrometry (AMS). With a branching ratio of (8.4 +- 0.6) 10^{-6} the strength of this decay mode, as measured by the B(GT)-value, is unexpectedly high. The result is discussed within a simple single-particle model and could be interpreted as a quasi-free decay of the 11Be halo neutron into a single-proton state.
We present for the first time precise spectroscopic information on the recently discovered decay mode beta-delayed 3p-emission. The detection of the 3p events gives an increased sensitivity to the high energy part of the Gamow-Teller strength distribution from the decay of 31Ar revealing that as much as 30% of the strength resides in the beta-3p decay mode. A simplified description of how the main decay modes evolve as the excitation energy increases in 31Cl is provided.
In an experiment performed at the LISE3 facility of GANIL, we studied the decay of 22Al produced by the fragmentation of a 36Ar primary beam. A beta-decay half-life of 91.1 +- 0.5 ms was measured. The beta-delayed one- and two-proton emission as well as beta-alpha and beta-delayed gamma decays were measured and allowed us to establish a partial decay scheme for this nucleus. New levels were determined in the daughter nucleus 22Mg. The comparison with model calculations strongly favours a spin-parity of 4+ for the ground state of 22Al.
A new and independent determination of the Gamow-Teller branching ratio in the beta-decay of 21Na is reported. The value obtained of 5.13 +- 0.43 % is in agreement with the currently adopted value and the most recent measurement. In contrast to previous experiments, the present method was based on the counting of the parent 21Na ions and the resulting 351 keV gamma-rays without coincident beta-particle detection.
We report the observation of a very exotic decay mode at the proton drip-line, the $beta$-delayed $gamma$-proton decay, clearly seen in the $beta$ decay of the $T_z$ = -2 nucleus $^{56}$Zn. Three $gamma$-proton sequences have been observed after the $beta$ decay. Here this decay mode, already observed in the $sd$-shell, is seen for the first time in the $fp$-shell. Both $gamma$ and proton decays have been taken into account in the estimation of the Fermi (F) and Gamow Teller (GT) strengths. Evidence for fragmentation of the Fermi strength due to strong isospin mixing is found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا