Do you want to publish a course? Click here

Two new free-floating or wide-orbit planets from microlensing

115   0   0.0 ( 0 )
 Added by Przemek Mroz
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Planet formation theories predict the existence of free-floating planets that have been ejected from their parent systems. Although they emit little or no light, they can be detected during gravitational microlensing events. Microlensing events caused by rogue planets are characterized by very short timescales $t_{rm E}$ (typically below two days) and small angular Einstein radii $theta_{rm E}$ (up to several uas). Here we present the discovery and characterization of two ultra-short microlensing events identified in data from the Optical Gravitational Lensing Experiment (OGLE) survey, which may have been caused by free-floating or wide-orbit planets. OGLE-2012-BLG-1323 is one of the shortest events discovered thus far ($t_{rm E}$=0.155 +/- 0.005 d, $theta_{rm E}$=2.37 +/- 0.10 uas) and was caused by an Earth-mass object in the Galactic disk or a Neptune-mass planet in the Galactic bulge. OGLE-2017-BLG-0560 ($t_{rm E}$=0.905 +/- 0.005 d, $theta_{rm E}$=38.7 +/- 1.6 uas) was caused by a Jupiter-mass planet in the Galactic disk or a brown dwarf in the bulge. We rule out stellar companions up to a distance of 6.0 and 3.9 au, respectively. We suggest that the lensing objects, whether located on very wide orbits or free-floating, may originate from the same physical mechanism. Although the sample of ultrashort microlensing events is small, these detections are consistent with low-mass wide-orbit or unbound planets being more common than stars in the Milky Way.



rate research

Read More

130 - P. Mroz , R. Poleski , C. Han 2020
High-cadence observations of the Galactic bulge by the microlensing surveys led to the discovery of a handful of extremely short-timescale microlensing events that can be attributed to free-floating or wide-orbit planets. Here, we report the discovery of another strong free-floating planet candidate, which was found from the analysis of the gravitational microlensing event OGLE-2019-BLG-0551. The light curve of the event is characterized by a very short duration (<3 d) and a very small amplitude (< 0.1 mag). From modeling of the light curve, we find that the Einstein timescale, tE = 0.381 +/- 0.017 d, is much shorter, and the angular Einstein radius, thetaE = 4.35 +/- 0.34 uas, is much smaller than those of typical lensing events produced by stellar-mass lenses (tE ~ 20 d, thetaE ~ 0.3 mas), indicating that the lens is very likely to be a planetary-mass object. We conduct an extensive search for possible signatures of a companion star in the light curve of the event, finding no significant evidence for the putative host star. For the first time, we also demonstrate that the angular Einstein radius of the lens does not depend on blending in the low-magnification events with strong finite source effects.
95 - Andrew Gould 2020
The mass and distance functions of free-floating planets (FFPs) would give major insights into the formation and evolution of planetary systems, including any systematic differences between those in the disk and bulge. We show that the only way to measure the mass and distance of individual FFPs over a broad range of distances is to observe them simultaneously from two observatories separated by $Dsim {cal O}(0.01,AU)$ (to measure their microlens parallax $pi_{rm E}$) and to focus on the finite-source point-lens (FSPL) events (which yield the Einstein radius $theta_{rm E}$). By combining the existing KMTNet 3-telescope observatory with a 0.3m $4,{rm deg}^2$ telescope at L2, of order 130 such measurements could be made over four years, down to about $Msim 6,M_oplus$ for bulge FFPs and $Msim 0.7,M_oplus$ for disk FFPs. The same experiment would return masses and distances for many bound planetary systems. A more ambitious experiment, with two 0.5m satellites (one at L2 and the other nearer Earth) and similar camera layout but in the infrared, could measure masses and distances of sub-Moon mass objects, and thereby probe (and distinguish between) genuine sub-Moon FFPs and sub-Moon ``dwarf planets in exo-Kuiper Belts and exo-Oort Clouds.
Genomic complexity can be used as a clock with which the moment in which life originated can be measured. Some authors who have studied this problem have come to the conclusion that it is not possible that terrestrial life originated here and that, in reality, life originated giga-years ago, before the solar system existed. If we accept this conclusion there is no other option than to admit that panspermia is something viable.The goal of this study is to propose a viable hypothesis for the transport of SLF from one planetary system to another. During the formation period of a planetary system giant planets can eject planets the size of the Earth, or larger, turning them into free-floating planets in interstellar space. These free-floating planets have also been called free floaters. If a free floater, which has developed life, enters a lifeless planetary system, it can seed the worlds of this system with SLF dragged by the stellar wind from one planet to another or by great impacts on the free planet. To support this hypothesis, I calculate the probability that one free floater reaches the planets zone of a planetary system, and also it was calculated the time it remains within the planetary zone in order to see if there is enough time to seed the host system.The probability of a free floater in the galaxy, within the region of the Sun, entering the planet zone of a system is 2.8x10-4, i.e., that {sim}3 of 10,000 free planets manage to enter some planetary system. At the galactocentric distance from the Sun I calculated that there are 21,495 free floaters floating around the galactic center. Hence, 6 free-floating planets manage to enter in planetary systems every galaxy rotation. Since the galaxy has rotated 54 times since its formation, then, {sim} 324 free floaters have entered some planetary system at the galactocentric distance of the Sun.
Most known extrasolar planets (exoplanets) have been discovered using the radial velocity$^{bf 1,2}$ or transit$^{bf 3}$ methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17--30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing$^{bf 6rm{bf -}bf 9}$, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing$^{bf 10}$. These planets are at least as numerous as the stars in the Milky Way$^{bf 10}$. Here we report a statistical analysis of microlensing data (gathered in 2002--07) that reveals the fraction of bound planets 0.5--10 AU (Sun--Earth distance) from their stars. We find that 17$_{bf -9}^{bf +6}$% of stars host Jupiter-mass planets (0.3--10 $MJ$, where $MJ {bf = 318}$ $Mearth$ and $Mearth$ is Earths mass). Cool Neptunes (10--30 $Mearth$) and super-Earths (5--10 $Mearth$) are even more common: their respective abundances per star are 52$_{bf -29}^{bf +22}$% and 62$_{bf -37}^{bf +35}$%. We conclude that stars are orbited by planets as a rule, rather than the exception.
We present the analysis of a very high-magnification ($Asim 900$) microlensing event KMT-2019-BLG-1953. A single-lens single-source (1L1S) model appears to approximately delineate the observed light curve, but the residuals from the model exhibit small but obvious deviations in the peak region. A binary lens (2L1S) model with a mass ratio $qsim 2times 10^{-3}$ improves the fits by $Deltachi^2=181.8$, indicating that the lens possesses a planetary companion. From additional modeling by introducing an extra planetary lens component (3L1S model) and an extra source companion (2L2S model), it is found that the residuals from the 2L1S model further diminish, but claiming these interpretations is difficult due to the weak signals with $Deltachi^2=16.0$ and $13.5$ for the 3L1S and 2L2L models, respectively. From a Bayesian analysis, we estimate that the host of the planets has a mass of $M_{rm host}=0.31^{+0.37}_{-0.17}~M_odot$ and that the planetary system is located at a distance of $D_{rm L}=7.04^{+1.10}_{-1.33}~{rm kpc}$ toward the Galactic center. The mass of the securely detected planet is $M_{rm p}=0.64^{+0.76}_{-0.35}~M_{rm J}$. The signal of the potential second planet could have been confirmed if the peak of the light curve had been more densely observed by followup observations, and thus the event illustrates the need for intensive followup observations for very high-magnification events even in the current generation of high-cadence surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا