Do you want to publish a course? Click here

An Empirical Template Library for FGK and Late--type A Stars Using LAMOST Observed Spectra

457   0   0.0 ( 0 )
 Added by A-Li Luo
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an empirical stellar spectra library created using spectra from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) DR5. This library represents a uniform data set ranging from 3750 through 8500K in effective temperature (T_eff), from -2.5 through +1.0 dex in metallicity ([Fe/H]), and from 0 to 5.0 dex in gravity (log g). The spectra in the library have resolution R~1800, with well-calibrated fluxes and rest-framed wavelengths. Using a large number of red stars observed by LAMOST, we generated denser K type templates to fill in data missing from current empirical spectral libraries, particularly the late K type. For K giants, we calibrated the spectroscopic surface gravities against the asteroseismic surface gravities. To verify the reliability of the parameters labeled for this library, we performed an internal cross-validation by using a chi^2 minimization method to interpolate parameters of each individual spectrum using the remaining spectra in the library. We obtained precisions of 41 K, 0.11 dex, and 0.05 dex for T_eff, log g, and [Fe/H], respectively, which means the templates are labeled with correct stellar parameters. Through external comparisons, we confirmed that measurements of the stellar parameters through this library can achieve accuracies of approximately 125K in T_eff, 0.1 dex in [Fe/H] and 0.20 dex in log g without systematic offset. This empirical library is useful for stellar parameter measurements because it has large parameter coverage and full wavelength coverage from 3800 to 8900A.



rate research

Read More

GALAH is a large-scale magnitude-limited southern stellar spectroscopic survey. Its second data release (GALAH DR2) provides values of stellar parameters and abundances of 23 elements for 342,682 stars (Buder et al.). Here we add a description of the public release of radial velocities with a typical accuracy of 0.1 km/s for 336,215 of these stars, achievable due to the large wavelength coverage, high resolving power and good signal to noise ratio of the observed spectra, but also because convective motions in stellar atmosphere and gravitational redshift from the star to the observer are taken into account. In the process we derive medians of observed spectra which are nearly noiseless, as they are obtained from between 100 and 1116 observed spectra belonging to the same bin with a width of 50 K in temperature, 0.2 dex in gravity, and 0.1 dex in metallicity. Publicly released 1181 median spectra have a resolving power of 28,000 and trace the well-populated stellar types with metallicities between -0.6 and +0.3. Note that radial velocities from GALAH are an excellent match to the accuracy of velocity components along the sky plane derived by Gaia for the same stars. The level of accuracy achieved here is adequate for studies of dynamics within stellar clusters, associations and streams in the Galaxy. So it may be relevant for studies of the distribution of dark matter.
We present a catalog of 166 spectroscopically identified hot subdwarf stars from LAMOST DR1, 44 of which show the characteristics of cool companions in their optical spectra. Atmospheric parameters of 122 non-composite spectra subdwarf stars were measured by fitting the profiles of hydrogen (H) and helium (He) lines with synthetic spectra from non-LTE model atmospheres. Most of the sdB stars scatter near the Extreme Horizontal Branch in the $T_{rm eff}-log{g}$ diagram and two well defined groups can be outlined. A clustering of He-enriched sdO stars appears near $T_{rm eff}=45,000$ K and $log(g) = 5.8$. The sdB population separates into several nearly parallel sequences in the $T_{rm eff}-{rm He}$ abundance diagram with clumps corresponding to those in the $T_{rm eff}-log{g}$ diagram. Over $38,000$ K (sdO) stars show abundance extremes, they are either He-rich or He-deficient and we observe only a few stars in the $ -1 < log(y) < 0$ abundance range. With increasing temperature these extremes become less prominent and the He abundance approaches to $log(y)sim-0.5$. A unique property of our sample is that it covers a large range in apparent magnitudes and galactic latitudes, therefore it contains a mix of stars from different populations and galactic environments. Our results are consistent with the findings of Hirsch (2009) and we conclude that He-rich and He-deficient sdB stars ($log(y) < 1$) probably origin from different populations. We also find that most sdO and sdB stars lie in a narrow strip in the luminosity and helium abundance plane, which suggests that these atmospheric parameters are correlated.
The Gaia-ESO Survey is obtaining high-quality spectroscopic data for about 10^5 stars using FLAMES at the VLT. UVES high-resolution spectra are being collected for about 5000 FGK-type stars. These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO 2nd internal release and will be part of its 1st public release of advanced data products. The final parameter scale is tied to the one defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. A set of open and globular clusters is used to evaluate the physical soundness of the results. Each methodology is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted-medians of those from the individual methods. The recommended results successfully reproduce the benchmark stars atmospheric parameters and the expected Teff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log g, and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for Teff, 0.10-0.25 dex for log g, and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex.
With the purpose of assessing classic spectroscopic methods on high-resolution and high signal-to-noise ratio spectra in the near-infrared wavelength region, we selected a sample of 65 F-, G-, and K-type stars observed with CARMENES, the new, ultra-stable, double-channel spectrograph at the 3.5 m Calar Alto telescope. We computed their stellar atmospheric parameters ($T_{rm eff}$, $log{g}$, $xi$, and [Fe/H]) by means of the StePar code, a Python implementation of the equivalent width method that employs the 2017 version of the MOOG code and a grid of MARCS model atmospheres. We compiled four Fe I and Fe II line lists suited to metal-rich dwarfs, metal-poor dwarfs, metal-rich giants, and metal-poor giants that cover the wavelength range from 5300 to 17100 angstroms, thus substantially increasing the number of identified Fe I and Fe II lines up to 653 and 23, respectively. We examined the impact of the near-infrared Fe I and Fe II lines upon our parameter determinations after an exhaustive literature search, placing special emphasis on the 14 $Gaia$ benchmark stars contained in our sample. Even though our parameter determinations remain in good agreement with the literature values, the increase in the number of Fe I and Fe II lines when the near-infrared region is taken into account reveals a deeper $T_{rm eff}$ scale that might stem from a higher sensitivity of the near-infrared lines to $T_{rm eff}$.
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has observed the H-band spectra of over 200 000 stars with $Rsim22 000$. The main motivation for this work is to test an alternative method to the standard APOGEE pipeline (APOGEE Stellar Parameter and Chemical Abundances Pipeline, ASPCAP) to derive parameters in the Near-InfraRed (NIR) for FGK dwarfs. textit{iSpec} and textit{Turbospectrum} are used to generate synthetic spectra matching APOGEE observations and to determine the parameters through $chi^2$ minimization. We present spectroscopic parameters ($T_mathrm{eff}$, $[M/H]$, $log g$, $v_{mic}$) for a sample of 3748 main-sequence and subgiant FGK stars, obtained from their APOGEE H-band spectra We compare our output parameters with the ones obtained with ASPCAP for the same stellar spectra, and find that the values agree within the expected uncertainties. A comparison with the optical samples California Planet Survey, HARPS-GTO (High Accuracy Radial Velocity Planet Searcher - Guaranteed Time Observations), and PASTEL, is also available, and median differences below 10 K for $T_mathrm{eff}$ and 0.2 dex for $[M/H]$ are found. Reasons for these differences are explored. The full H-band line-list, the line selection for the synthesis and the synthesized spectra are available for download, as well as the calculated parameters and their estimated uncertainties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا