Do you want to publish a course? Click here

A Serre presentation for the $imath$quantum groups

121   0   0.0 ( 0 )
 Added by Weiqiang Wang
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $(bf U, bf U^imath)$ be a quasi-split quantum symmetric pair of arbitrary Kac-Moody type, where quasi-split means the corresponding Satake diagram contains no black node. We give a presentation of the $imath$quantum group $bf U^imath$ with explicit $imath$Serre relations. The verification of new $imath$Serre relations is reduced to some new q-binomial identities. Consequently, $bf U^imath$ is shown to admit a bar involution under suitable conditions on the parameters.



rate research

Read More

Let $(bf U, bf U^imath)$ be a quantum symmetric pair of Kac-Moody type. The $imath$quantum groups $bf U^imath$ and the universal $imath$quantum groups $widetilde{bf U}^imath$ can be viewed as a generalization of quantum groups and Drinfeld doubles $widetilde{bf U}$. In this paper we formulate and establish Serre-Lusztig relations for $imath$quantum groups in terms of $imath$divided powers, which are an $imath$-analog of Lusztigs higher order Serre relations for quantum groups. This has applications to braid group symmetries on $imath$quantum groups.
154 - Weinan Zhang 2021
Recently, Lu and Wang formulated a Drinfeld type presentation for $imath$quantum group $widetilde{{mathbf U}}^imath$ arising from quantum symmetric pairs of split affine ADE type. In this paper, we generalize their results by establishing a current presentation for $widetilde{{mathbf U}}^imath$ of arbitrary split affine type.
144 - Hideya Watanabe 2019
$imath$quantum groups are generalizations of quantum groups which appear as coideal subalgebras of quantum groups in the theory of quantum symmetric pairs. In this paper, we define the notion of classical weight modules over an $imath$quantum group, and study their properties along the lines of the representation theory of weight modules over a quantum group. In several cases, we classify the finite-dimensional irreducible classical weight modules by a highest weight theory.
The $imath$Serre relations and the corresponding Serre-Lusztig relations are formulated for arbitrary $imath$quantum groups arising from quantum symmetric pairs of Kac-Moody type. This generalizes the main results in [CLW18, CLW20].
let $widetilde{bf U}^imath$ be a quasi-split universal $imath$quantum group associated to a quantum symmetric pair $(widetilde{bf U}, widetilde{bf U}^imath)$ of Kac-Moody type with a diagram involution $tau$. We establish the Serre-Lusztig relations for $widetilde{bf U}^imath$ associated to a simple root $i$ such that $i eq tau i$, complementary to the Serre-Lusztig relations associated to $i=tau i$ which we obtained earlier. A conjecture on braid group symmetries on $widetilde{bf U}^imath$ associated to $i$ disjoint from $tau i$ is formulated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا