Do you want to publish a course? Click here

Adaptive Density Estimation on Bounded Domains

131   0   0.0 ( 0 )
 Added by Karine Bertin
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We study the estimation, in Lp-norm, of density functions defined on [0,1]^d. We construct a new family of kernel density estimators that do not suffer from the so-called boundary bias problem and we propose a data-driven procedure based on the Goldenshluger and Lepski approach that jointly selects a kernel and a bandwidth. We derive two estimators that satisfy oracle-type inequalities. They are also proved to be adaptive over a scale of anisotropic or isotropic Sobolev-Slobodetskii classes (which are particular cases of Besov or Sobolev classical classes). The main interest of the isotropic procedure is to obtain adaptive results without any restriction on the smoothness parameter.



rate research

Read More

We address the problem of adaptive minimax density estimation on $bR^d$ with $bL_p$--loss on the anisotropic Nikolskii classes. We fully characterize behavior of the minimax risk for different relationships between regularity parameters and norm indexes in definitions of the functional class and of the risk. In particular, we show that there are four different regimes with respect to the behavior of the minimax risk. We develop a single estimator which is (nearly) optimal in orderover the complete scale of the anisotropic Nikolskii classes. Our estimation procedure is based on a data-driven selection of an estimator from a fixed family of kernel estimators.
164 - Karine Bertin 2013
In this paper we consider the problem of estimating $f$, the conditional density of $Y$ given $X$, by using an independent sample distributed as $(X,Y)$ in the multivariate setting. We consider the estimation of $f(x,.)$ where $x$ is a fixed point. We define two different procedures of estimation, the first one using kernel rules, the second one inspired from projection methods. Both adapted estimators are tuned by using the Goldenshluger and Lepski methodology. After deriving lower bounds, we show that these procedures satisfy oracle inequalities and are optimal from the minimax point of view on anisotropic H{o}lder balls. Furthermore, our results allow us to measure precisely the influence of $mathrm{f}_X(x)$ on rates of convergence, where $mathrm{f}_X$ is the density of $X$. Finally, some simulations illustrate the good behavior of our tuned estimates in practice.
This paper studies the estimation of the conditional density f (x, $times$) of Y i given X i = x, from the observation of an i.i.d. sample (X i , Y i) $in$ R d , i = 1,. .. , n. We assume that f depends only on r unknown components with typically r d. We provide an adaptive fully-nonparametric strategy based on kernel rules to estimate f. To select the bandwidth of our kernel rule, we propose a new fast iterative algorithm inspired by the Rodeo algorithm (Wasserman and Lafferty (2006)) to detect the sparsity structure of f. More precisely, in the minimax setting, our pointwise estimator, which is adaptive to both the regularity and the sparsity, achieves the quasi-optimal rate of convergence. Its computational complexity is only O(dn log n).
We discuss parametric estimation of a degenerate diffusion system from time-discrete observations. The first component of the degenerate diffusion system has a parameter $theta_1$ in a non-degenerate diffusion coefficient and a parameter $theta_2$ in the drift term. The second component has a drift term parameterized by $theta_3$ and no diffusion term. Asymptotic normality is proved in three different situations for an adaptive estimator for $theta_3$ with some initial estimators for ($theta_1$ , $theta_2$), an adaptive one-step estimator for ($theta_1$ , $theta_2$ , $theta_3$) with some initial estimators for them, and a joint quasi-maximum likelihood estimator for ($theta_1$ , $theta_2$ , $theta_3$) without any initial estimator. Our estimators incorporate information of the increments of both components. Thanks to this construction, the asymptotic variance of the estimators for $theta_1$ is smaller than the standard one based only on the first component. The convergence of the estimators for $theta_3$ is much faster than the other parameters. The resulting asymptotic variance is smaller than that of an estimator only using the increments of the second component.
Let $X|musim N_p(mu,v_xI)$ and $Y|musim N_p(mu,v_yI)$ be independent $p$-dimensional multivariate normal vectors with common unknown mean $mu$. Based on observing $X=x$, we consider the problem of estimating the true predictive density $p(y|mu)$ of $Y$ under expected Kullback--Leibler loss. Our focus here is the characterization of admissible procedures for this problem. We show that the class of all generalized Bayes rules is a complete class, and that the easily interpretable conditions of Brown and Hwang [Statistical Decision Theory and Related Topics (1982) III 205--230] are sufficient for a formal Bayes rule to be admissible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا