Do you want to publish a course? Click here

LiLiMaRlin, a Library of Libraries of Massive-Star High-Resolution Spectra with applications to OWN, MONOS, and CollDIBs

99   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

LiLiMaRlin is a library of libraries of massive-star high-resolution optical spectra built by collecting data from [a] our spectroscopic surveys (OWN, IACOB. NoMaDS, and CAFE-BEANS) and programs and [b] searches in public archives. The current version has 18 077 spectra of 1665 stars obtained with seven different telescopes (HET 9.2 m, NOT 2.56 m, CAHA 2.2 m, MPG/ESO 2.2 m, OHP 1.93 m, Mercator 1.2 m, and Stella 1.2 m). All the spectra have been filtered to eliminate misidentifications and bad-quality ones, uniformly reprocessed, and placed on a common format. We present applications of this library of libraries to the analysis of spectroscopic binaries (OWN and MONOS, see poster by E. Trigueros Paez at this meeting) and the study of the interstellar medium (CollDIBs). We discuss our plans for the future.



rate research

Read More

New instrumental capabilities and the wealth of astrophysical information extractable from the near-infrared wavelength region have led to a growing interest in the field of high resolution spectroscopy at 1-5 mu. We aim to provide a library of observed high-resolution and high signal-to-noise-ratio near-infrared spectra of stars of various types throughout the Hertzsprung-Russell diagram. This is needed for the exploration of spectral features in this wavelength range and for comparison of reference targets with observations and models. High quality spectra were obtained using the CRIRES near-infrared spectrograph at ESOs VLT covering the range from 0.97 to 5.3 mu at high spectral resolution. Accurate wavelength calibration and correction for of telluric lines were performed by fitting synthetic transmission spectra for the Earths atmosphere to each spectrum individually. We describe the observational strategy and the current status and content of the library which includes 13 objects. The first examples of finally reduced spectra are presented. This publication will serve as a reference paper to introduce the library to the community and explore the extensive amount of material.
We present a high resolution synthetic spectral library, INTRIGOSS, designed for studying FGK stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surface Flux SPectra (FSP), in the 4830-5400 A, wavelength range, were computed with the SPECTRUM code. INTRIGOSS uses the solar composition by Grevesse et al. 2007 and four [alpha/Fe] abundance ratios and consists of 15,232 spectra. The synthetic spectra are computed with astrophysical gf-values derived by comparing synthetic predictions with a very high SNR solar spectrum and the UVES-U580 spectra of five cool giants. The validity of the NSPs is assessed by using the UVES-U580 spectra of 2212 stars observed in the framework of the Gaia-ESO Survey and characterized by homogeneous and accurate atmospheric parameter values and by detailed chemical compositions. The greater accuracy of NSPs with respect to spectra from the AMBRE, GES_Grid, PHOENIX, C14, and B17 synthetic spectral libraries is demonstrated by evaluating the consistency of the predictions of the different libraries for the UVES-U580 sample stars. The validity of the FSPs is checked by comparing their prediction with both observed spectral energy distribution and spectral indices. The comparison of FSPs with SEDs derived from ELODIE, INDO--U.S., and MILES libraries indicates that the former reproduce the observed flux distributions within a few percent and without any systematic trend. The good agreement between observational and synthetic Lick/SDSS indices shows that the predicted blanketing of FSPs well reproduces the observed one, thus confirming the reliability of INTRIGOSS FSPs.
We computed a comprehensive set of theoretical ultraviolet spectra of hot, massive stars with the radiation-hydrodynamics code WM-Basic. This model atmosphere and spectral synthesis code is optimized for computing the strong P Cygni-type lines originating in the winds of hot stars, which are the strongest features in the ultraviolet spectral region. The computed set is suitable as a spectral library for inclusion in evolutionary synthesis models of star clusters and star-forming galaxies. The chosen stellar parameters cover the upper left Hertzsprung-Russell diagram at L >~ 10^2.75 Lsun and T_eff >~ 20,000 K. The adopted elemental abundances are 0.05 Zsun, 0.2 Zsun, 0.4 Zsun, Zsun, and 2 Zsun. The spectra cover the wavelength range from 900 to 3000 {AA} and have a resolution of 0.4 {AA}. We compared the theoretical spectra to data of individual hot stars in the Galaxy and the Magellanic Clouds obtained with the International Ultraviolet Explorer (IUE) and Far Ultraviolet Spectroscopic Explorer (FUSE) satellites and found very good agreement. We built a library with the set of spectra and implemented it into the evolutionary synthesis code Starburst99 where it complements and extends the existing empirical library towards lower chemical abundances. Comparison of population synthesis models at solar and near-solar composition demonstrates consistency between synthetic spectra generated with either library. We discuss the potential of the new library for the interpretation of the rest-frame ultraviolet spectra of star-forming galaxies. Properties that can be addressed with the models include ages, initial mass function, and heavy-element abundance. The library can be obtained both individually or as part of the Starburst99 package.
We present an extended ultraviolet-blue (850-4700 AA) library of theoretical stellar spectral energy distributions (SEDs) computed at high resolution, R= 50,000. The UVBLUE grid, as we named the library, is based on LTE calculations carried out with ATLAS9 and SYNTHE codes developed by R. L. Kurucz and consists of nearly 1800 entries that cover a large volume of the parameter space. It spans a range in effective temperature from 3000 to 50,000 K, the surface gravity ranges from log g= 0.0 to 5.0 with a step of 0.5 dex, while seven chemical compositions are considered: [Fe/H]= -2.0, -1.5, -1.0, -0.5, +0.0, +0.3 and +0.5 dex. For its coverage across the H-R diagram, this library is the most comprehensive one ever computed at high resolution in the short-wavelength spectral range, and useful application can be foreseen both for the study of single stars and in population synthesis models of galaxies and other stellar systems.
Context. High resolution stellar spectral atlases are valuable resources to astronomy. They are rare in the $1 - 5,mu$m region for historical reasons, but once available, high resolution atlases in this part of the spectrum will aid the study of a wide range of astrophysical phenomena. Aims. The aim of the CRIRES-POP project is to produce a high resolution near-infrared spectral library of stars across the H-R diagram. The aim of this paper is to present the fully reduced spectrum of the K giant 10 Leo that will form the basis of the first atlas within the CRIRES-POP library, to provide a full description of the data reduction processes involved, and to provide an update on the CRIRES-POP project. Methods. All CRIRES-POP targets were observed with almost 200 different observational settings of CRIRES on the ESO Very Large Telescope, resulting in a basically complete coverage of its spectral range as accessible from the ground. We reduced the spectra of 10 Leo with the CRIRES pipeline, corrected the wavelength solution and removed telluric absorption with Molecfit, then resampled the spectra to a common wavelength scale, shifted them to rest wavelengths, flux normalised, and median combined them into one final data product. Results. We present the fully reduced, high resolution, near-infrared spectrum of 10 Leo. This is also the first complete spectrum from the CRIRES instrument. The spectrum is available online. Conclusions. The first CRIRES-POP spectrum has exceeded our quality expectations and will form the centre of a state-of-the-art stellar atlas. This first CRIRES-POP atlas will soon be available, and further atlases will follow. All CRIRES-POP data products will be freely and publicly available online.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا