Van der Waals heterostructures have been lately intensively studied because they offer a large variety of properties that can be controlled by selecting 2D materials and their sequence in the stack. The exact arrangement of the layers as well as the exact arrangement of the atoms within the layers, both are important for the properties of the resulting device. Recently it has been demonstrated that convergent beam electron diffraction (CBED) allows quantitative three-dimensional mapping of atomic positions in three-dimensional materials from a single CBED pattern. In this study we investigate CBED in more detail by simulating and performing various CBED regimes, with convergent and divergent wavefronts, on a somewhat simplified system: a 2D monolayer crystal. In CBED, each CBED spot is in fact an in-line hologram of the sample, where in-line holography is known to exhibit high intensity contrast in detection of weak phase objects that are not detectable in conventional in-focus imaging mode. Adsorbates exhibit strong intensity contrast in zero and higher order CBED spots, whereas lattice deformation such as strain or rippling cause noticeable intensity contrast only in the first and higher order CBED spots. The individual CBED spots can be reconstructed as typical in-line holograms, and the resolution of 2.13 A can be in principle achieved in the reconstructions. We provide simulated and experimental examples of CBED of a 2D monolayer crystal. The simulations show that individual CBED spots can be treated as in-line holograms and sample distributions such as adsorbates, can be reconstructed. Individual atoms can be reconstructed from a single CBED pattern provided the later exhibits high-order CBED spots. Examples of reconstructions obtained from experimental CBED patterns, at a resolution of 2.7 A, are shown.