Do you want to publish a course? Click here

The COSMOS-UltraVISTA stellar-to-halo mass relationship: new insights on galaxy formation efficiency out to $zsim5$

85   0   0.0 ( 0 )
 Added by Louis Legrand
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using precise galaxy stellar mass function measurements in the COSMOS field we determine the stellar-to-halo mass relationship (SHMR) using a parametric abundance matching technique. The unique combination of size and highly complete stellar mass estimates in COSMOS allows us to determine the SHMR over a wide range of halo masses from $zsim0.2$ to $zsim5$. At $zsim 0.2$ the ratio of stellar-to-halo mass content peaks at a characteristic halo mass $M_{rm h} =10^{12} M_odot$ and declines at higher and lower halo masses. This characteristic halo mass increases with redshift reaching $M_{rm h} =10^{12.5} M_odot$ at $zsim2.3$ and remaining flat up to $z=4$. We considered the principal sources of uncertainty in our stellar mass measurements and also the variation in halo mass estimates in the literature. We show that our results are robust to these sources of uncertainty and explore likely explanation for differences between our results and those published in the literature. The steady increase in characteristic halo mass with redshift points to a scenario where cold gas inflows become progressively more important in driving star-formation at high redshifts but larger samples of massive galaxies are needed to rigorously test this hypothesis.



rate research

Read More

We provide a coherent, uniform measurement of the evolution of the logarithmic star formation rate (SFR) - stellar mass ($M_*$) relation, called the main sequence of star-forming galaxies (MS), for galaxies out to $zsim5$. We measure the MS using mean stacks of 3 GHz radio continuum images to derive average SFRs for $sim$200,000 mass-selected galaxies at $z>0.3$ in the COSMOS field. We describe the MS relation adopting a new model that incorporates a linear relation at low stellar mass (log($M_*$/M$_odot$)$<$10) and a flattening at high stellar mass that becomes more prominent at low redshift ($z<1.5$). We find that the SFR density peaks at $1.5<z<2$ and at each epoch there is a characteristic stellar mass ($M_* = 1 - 4 times 10^{10}mathrm{M}_odot$) that contributes the most to the overall SFR density. This characteristic mass increases with redshift, at least to $zsim2.5$. We find no significant evidence for variations in the MS relation for galaxies in different environments traced by the galaxy number density at $0.3<z<3$, nor for galaxies in X-ray groups at $zsim0.75$. We confirm that massive bulge-dominated galaxies have lower SFRs than disk-dominated galaxies at a fixed stellar mass at $z<1.2$. As a consequence, the increase in bulge-dominated galaxies in the local star-forming population leads to a flattening of the MS at high stellar masses. This indicates that mass-quenching is linked with changes in the morphological composition of galaxies at a fixed stellar mass.
Rapid advance has been made recently in accurate distance measurements for nearby ($D < 11$ Mpc) galaxies based on the magnitude of the tip of red giant branch stars resolved with the Hubble Space Telescope. We use observational properties of galaxies presented in the last version of Updated Nearby Galaxy Catalog to derive a halo mass of luminous galaxies via orbital motion of their companions. Our sample contains 298 assumed satellites with known radial velocities around 25 Milky Way-like massive galaxies and 65 assumed satellites around 47 fainter dominant galaxies. The average total mass-to-$K$-band luminosity ratio is $31pm6 M_odot/L_odot$ for the luminous galaxies, increasing up to $sim200 M_odot/L_odot$ toward dwarfs. The bulge-dominated luminous galaxies are characterized with $langle{}M_T/L_Krangle = 73pm15 M_odot/L_odot$, while the disc-dominated spirals have $langle{}M_T/L_Krangle = 17.4pm2.8 M_odot/L_odot$. We draw attention to a particular subsample of luminous spiral galaxies with signs of declining rotation curve, which have a radial velocity dispersion of satellites less than 55 km/s and a poor dark matter halo with $langle{}M_T/L_Krangle = 5.5pm1.1 M_odot/L_odot$. We note that a fraction of quenched (dSph, dE) companions around Milky Way-like galaxies decreases with their linear projected separation as $0.75 exp(-R_p/350,mathrm{kpc})$.
Though smooth, extended spheroidal stellar outskirts have long been observed around nearby dwarf galaxies, it is unclear whether dwarfs generically host an extended stellar halo. We use imaging from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) to measure the shapes of dwarf galaxies out to four effective radii for a sample of dwarfs at 0.005<z<0.2 and 10^7<M_star/M_sun<10^9.6. We find that dwarfs are slightly triaxial, with a <B/A> >~ 0.75 (where the ellipsoid is characterized by three principle semi-axes constrained by C<=B<=A). At M_star>10^8.5 M_sun, the galaxies grow from thick disk-like near their centers towards the spheroidal extreme at four effective radii. We also see that although blue dwarfs are, on average, characterized by thinner discs than red dwarfs, both blue and red dwarfs grow more spheroidal as a function of radius. This relation also holds true for a comparison between field and satellite dwarfs. This uniform trend towards relatively spheroidal shapes as a function of radius is consistent with an in-situ formation mechanism for stellar outskirts around low-mass galaxies, in agreement with proposed models where star formation feedback produces round stellar outskirts around dwarfs.
236 - L.Wang , D.Farrah , S.J.Oliver 2012
We have constructed an extended halo model (EHM) which relates the total stellar mass and star-formation rate (SFR) to halo mass (M_h). An empirical relation between the distribution functions of total stellar mass of galaxies and host halo mass, tuned to match the spatial density of galaxies over 0<z<2 and the clustering properties at z~0, is extended to include two different scenarios describing the variation of SFR on M_h. We also present new measurements of the redshift evolution of the average SFR for star-forming galaxies of different stellar mass up to z=2, using data from the Herschel Multi-tiered Extragalactic Survey (HerMES) for infrared-bright galaxies. Combining the EHM with the halo accretion histories from numerical simulations, we trace the stellar mass growth and star-formation history in halos spanning a range of masses. We find that: (1) The intensity of the star-forming activity in halos in the probed mass range has steadily decreased from z~2 to 0; (2) At a given epoch, halos in the mass range between a few times 10^{11} M_Sun and a few times 10^{12} M_Sun are the most efficient at hosting star formation; (3) The peak of SFR density shifts to lower mass halos over time; (4) Galaxies that are forming stars most actively at z~2 evolve into quiescent galaxies in todays group environments, strongly supporting previous claims that the most powerful starbursts at z~2 are progenitors of todays elliptical galaxies.
406 - Ying Zu , Rachel Mandelbaum 2015
We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in SDSS. Building on the iHOD framework developed by Zu & Mandelbaum (2015a), we consider two quenching scenarios: 1) a halo quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and 2) a hybrid quenching model in which the quenched fraction of galaxies depends on their stellar mass while the satellite quenching has an extra dependence on halo mass. The two best-fit models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above $10^{11} M_odot/h^2$. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed $M_*$, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (~$1.5times10^{12} Modot/h^2$), hinting at a uniform quenching mechanism for both, e.g., the virial shock-heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter halos rather than the properties of their stellar components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا