Do you want to publish a course? Click here

Charge transfer tuning in TiO2 hybrid nanostructures with acceptor-acceptor systems

78   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

An interesting interplay between two different modifiers and the surface of titanium dioxide leads to a significant change in photoelectrochemical properties of the designed hybrid materials. The semiconductor is photosensitized by one of the counterparts and exhibits the photoelectrochemical photocurrent switching effect thanks to interactions with graphene oxide - the second modifier mediates charge transfer processes in the system, allowing us to design the materials response at the molecular level. Based on the selection of molecular counterpart we may affect the behaviour of hybrids upon light irradiation in a different manner, which may be useful for the applications in photovoltaics, optoelectronics and photocatalysis. Here we focus particularly on the nanocomposites made of titanium dioxide with graphene oxide combined with either 2,3,5,6-tetrachlorobenzoquinone or 2,3-dichloro-5,6-dihydroxybenzoquinone - for these two materials we observed a major change in the charge transfer processes occurring in the system.



rate research

Read More

We present a novel {em ab initio} approach for computing intramolecular charge and energy transfer rates based upon a projection operator scheme that parses out specific internal nuclear motions that accompany the electronic transition. Our approach concentrates the coupling between the electronic and nuclear degrees of freedom into a small number of reduced harmonic modes that can be written as linear combinations of the vibrational normal modes of the molecular system about a given electronic minima. Using a time-convolutionless master-equation approach, parameterized by accurate quantum-chemical methods, we benchmark the approach against experimental results and predictions from Marcus theory for triplet energy transfer for a series of donor-bridge-acceptor systems. We find that using only a single reduced mode--termed the primary mode, one obtains an accurate evaluation of the golden-rule rate constant and insight into the nuclear motions responsible for coupling the initial and final electronic states. We demonstrate the utility of the approach by computing the inelastic electronic transition rates in a model donor-bridge-acceptor complex that has been experimentally shown that its exciton transfer pathway can be radically modified by mode-specific infrared excitation of its vibrational mode.
Electronic and optical properties of doped organic semiconductors are dominated by local interactions between donor and acceptor molecules. However, when such systems are in crystalline form, long-range order competes against short-range couplings. In a first-principles study on three experimentally resolved bulk structures of quaterthiophene doped by (fluorinated) tetracyanoquinodimethane, we demonstrate the crucial role of long-range interactions in donor/acceptor co-crystals. The band structures of the investigated materials exhibit direct band-gaps decreasing in size with increasing amount of F atoms in the acceptors. The valence-band maximum and conduction-band minimum are found at the Brillouin zone boundary and the corresponding wave-functions are segregated on donor and acceptor molecules, respectively. With the aid of a tight-binding model, we rationalize that the mechanisms responsible for these behaviors, which are ubiquitous in donor/acceptor co-crystals, are driven by long-range interactions. The optical response of the analyzed co-crystals is highly anisotropic. The absorption onset is dominated by an intense resonance corresponding to a charge-transfer excitation. Long-range interactions are again responsible for this behavior, which enhances the efficiency of the co-crystals for photo-induced charge separation and transport. In addition to this result, which has important implications in the rational design of organic materials for opto-electronics, our study clarifies that cluster models, accounting only for local interactions, cannot capture the relevant impact of long-range order in donor/acceptor co-crystals.
To identify reliable molecular design principles for energy level tuning in donor/acceptor conjugated polymers (CPs), we studied the governing factors by means of ab initio calculations based on density-functional theory (DFT). We investigated a series of CPs in which we independently and systematically varied the electron withdrawing power of the acceptor unit and the electron donating power of the donor unit, while maintaining the same conjugated chain conformation. We observed that the introduction of a stronger acceptor unit, while keeping the same donor unit in the CP, lowers the LUMO level, but leaves the HOMO level almost unchanged. Conversely, enhancing the strength of the donor unit for the same acceptor unit raises the HOMO level, while maintaining the LUMO level. We identified strong correlations between the frontier orbital energy levels and the degree of orbital localization, which depends on the electron donating or withdrawing power of the molecular groups carrying the orbitals. Moreover, the HOMO/LUMO gap of the CP is directly proportional to the charge transfer between donating and accepting units, which provides a robust design criterion for CPs.
Impurity levels and formation energies of acceptors in wurtzite GaN are predicted ab initio. Be_Ga is found to be the shallow (thermal ionization energy $sim$ 0.06 eV); $Mg_{Ga}$ and $Zn_{Ga}$ are mid-deep acceptors (0.23 eV and 0.33 eV respectively); $Ca_{Ga}$ and $Cd_{Ga}$ are deep acceptors ($sim$0.65 eV); $Si_N$ is a midgap trap with high formation energy; finally, contrary to recent claims, $C_N$ is a deep acceptor (0.65 eV). Interstitials and heteroantisites are energetically not competitive with substitutional incorporation.
We consider the interaction between acceptor pairs in doped semiconductors in the limit of large inter-acceptor separation relevant for low doping densities. Modeling individual acceptors via the spherical model of Baldereschi and Lipari, we calculate matrix elements of the quadrupole tensor between the four degenerate ground states and show that the acceptor has a nonzero quadrupole moment. As a result, the dominant contribution to the large-separation acceptor-acceptor interaction comes from direct (charge-density) terms rather than exchange terms. The quadrupole is the leading nonzero moment, so the electric quadrupole-quadrupole interaction dominates for large separation. We calculate the matrix elements of the quadrupole-quadrupole interaction Hamiltonian in a product-state basis and diagonalize, obtaining a closed-form expression for the energies and degeneracies of the sixteen-state energy spectrum. All dependence on material parameters enters via an overall prefactor, resulting in surprisingly simple and universal results. This simplicity is due, in part, to a mathematical happenstance, the nontrivial vanishing of a particular Wigner 6-j symbol. Results are relevant to the control of two-qubit interactions in quantum computing implementations based on acceptor spins, as well as calculations of the thermodynamic properties of insulating p-type semiconductors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا